Preview

Transformation Of Escherichia Coli With pGLO Plasmid

Better Essays
Open Document
Open Document
1560 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Transformation Of Escherichia Coli With pGLO Plasmid
Transformation Of Escherichia Coli With pGLO Plasmid

April 24, 2013

ABSTRACT: This experiment focuses on genetic engineering and transformation of bacteria. The characteristics of bacteria are altered from an external source to allow them to express a new trait, in this case antibiotic resistance. In is experiment foreign DNA is inserted into Escherichia coli in order to alter its phenotype. The goal of the experiment is to transform E. coli with pGLO plasmid, which carries a gene for ampicillin resistance, and determine the transformation efficiency. The bacteria are transformed by a combination of calcium chloride and heat shock. When the bacteria are incubated on ice, the fluid cell membrane is slowed and then the heat shock increases permeability of the membrane. The results obtained in the experiment show that the E. coli that was transformed with pGLO was able to resist ampicillin and grow in its presence. These results suggest that microorganisms can be genetically engineered to selectively resist certain contaminants, which means that they can potentially be used to human benefit to rid the environment, or even the human body, of unwanted toxins.

INTRODUCTION:

Transformation occurs when altered genetic characteristics of bacteria are acquired from a different source. Plasmids are used to transform bacteria because they are small pieces of DNA capable of independently replicating and therefore transferring their (often beneficial) traits to the bacteria. The goal of genetic transformation in this experiment is for the bacteria Escherichia coli to obtain an antibiotic resistance to ampicillin, which can be physically observed when the bacteria expresses the reporter gene Green Fluorescent Protein (GFP) because the transformed bacteria will glow green under UV light when in the presence of arabinose. The gene for GFP is naturally found in a bioluminescent jellyfish, allowing it to glow in the dark. The plasmid used to transform the bacteria



Cited: Chung CT. 1989. One-step preparation of competent Escherichia coli: Transformation and storage of bacterial cells in the same solution. Proceedings of the National Academy of Sciences of the United States of America, 86:2172-2175. Hanahan D. 1983. Studies on Transformation of Escherichia coli with Plasmids. Journal of Molecular Biology, 166:557-580. Pieper DH. 2000. Engineering bacteria for bioremediation. Current Opinion in Biotechnology, 11.3:262-270. Spilios K (ed). 2013. Principles of Biology, II. Hayden-McNeil Publishing, Plymouth, MI. Module #6, pp 119-127.

You May Also Find These Documents Helpful

  • Powerful Essays

    Biology Lab

    • 2372 Words
    • 10 Pages

    If the pGLO plasmid is inserted into competent Escherichia coli cells, then the transformed bacteria will be resistant to ampicillin and will glow green under UV light. If samples of DNA are cut using certain restriction enxymes and separated using gel electrophoresis, then the smaller the DNA fragment cut, the greater the distance it will travel in the gel.…

    • 2372 Words
    • 10 Pages
    Powerful Essays
  • Better Essays

    The First

    • 1338 Words
    • 6 Pages

    In the first part of this lab, E.coli cells were transformed with an R-plasmid carrying a tetracycline resistant gene, giving rise to tetracycline resistant E.coli strain. This was accomplished through transformation, which allowed E.coli to directly uptake the naked DNA molecule carrying the antibiotic resistant gene (1). However, in order to take up the DNA and incorporate them into their genome via recombination, cells must be competent (1). Therefore, E.coli cells which are not competent under normal conditions were treated with cold and high concentration of CaCl2, in order to make them artificially competent (1). The transformants were grown on the LB with the tetracycline antibiotic, and on the LB without the tetracycline. Then the viable competent cells and the viable cells were counted to calculate the frequency of transformation.…

    • 1338 Words
    • 6 Pages
    Better Essays
  • Powerful Essays

    coli for transformation. The reaction was heat-shocked at 42 ºC to aid transformation. The cells were recovered and plated on a 30 µg/mL kanamycin and the colonies were estimated after 24 hours.…

    • 1264 Words
    • 6 Pages
    Powerful Essays
  • Good Essays

    The topic of this research involved the occurrence of genetic transformation in bacteria (E. Coli). More specifically, a previously prepared pGLO plasmid--which consisted of the gene to be cloned--was used to transform non-pathogenic bacteria. The pGLO plasmid contained a gene for the Green Fluorescent Protein (GFP) from a bioluminescent jellyfish and a gene for resistance to ampicillin, an antibiotic. Essentially, we wanted to determine the conditions of the bacteria that would glow. Our hypothesis was that the transformed solution with no plasmid DNA and ampicillin would produce no bacteria colonies, as it wouldn 't be able to grow without the gene for ampicillin resistance. Also, the transformed solution with just LB and ampicillin would produce bacteria colonies but the transformed solution with LB/ampicillin/Arabinose would produce glowing bacteria colonies (as Arabinose allows the GFP gene to be expressed, but in both cases bacteria colonies would be present because of the gene of resistance to the antibiotic, ampicillin). We essentially made the required transformed solutions--and the controls--swiped them on the agar plate, and then observed to see whether or not bacteria colonies grew and whether or not they glowed. Our data fully supported our hypothesis. We can thus conclude that bacteria can take in foreign DNA through the process of transformation and that this foreign DNA can fundamentally change the bacteria (ex: making it glow). Future research can involve inserting other pieces of DNA into bacteria from different organisms, making the bacteria take on various phenotypic characteristics.…

    • 1330 Words
    • 5 Pages
    Good Essays
  • Good Essays

    Genetic transformation is a process that primarily is inserting new DNA into an organism to change that organism’s trait. This process has many useful benefits when used correctly in different organisms. In this lab, bacteria was transformed by inserting DNA for Green Fluorescent Proteins. The DNA for these proteins were taken from bioluminescent jellyfish Aequorea victoria. One of the main lessons of the lab is learning of the use of ‘plasmids’. Plasmids are small pieces of DNA that usually code for one trait and are easily transferable between bacteria. This transfer of plasmids between bacteria is actually extremely helpful for them and are key in their survival. The plasmid that codes for the Green Fluorescent Proteins is accompanied with a gene for resistance to the antibiotic ampicillin. To ‘switch on’ the gene for fluorescence caused by the proteins, sugar arabinose must be added to the bacteria’s environment. If there is no sugar arabinose introduced to the plates, then the bacteria will appear white and will not glow, even if the gene for the proteins is successfully inserted. If the gene was successfully inserted and there is sugar arabinose present then the bacteria will glow a fluorescent green. The objectives for this lab is was to see the effects on bacteria in four different cases. The first case is the effect on bacteria when the gene for pGLO is introduced with LB (a ‘broth’ like substance that bacteria feed off of) and ampacillin. The second case is the effect on bacteria when the gene for pGLO is introduced with LB, ampacillin, and sugar arabinose. The third case is the effect on bacteria when no gene for pGLO is introduced, but LB and ampacillin is still introduced, The fourth case is the effect on bacteria when no gene for pGLO is introduced, but bacteria is still placed in a LB enriched environment. The…

    • 938 Words
    • 4 Pages
    Good Essays
  • Good Essays

    Genetic Engineering

    • 541 Words
    • 3 Pages

    By using the techniques of genetic engineering scientists are able to modify genetic materials so that a particular gene of interest from one cell can be incorporated into a different cell. It is necessary to obtain a gene to modify genetic material. First a scientist isolates plasmid DNA from bacteria and DNA carrying a gene of interest from cells of another organism, such as an animal. A piece of DNA containing the gene is inserted into a plasmid, producing recombinant DNA, and the recombinant plasmid is returned to a bacterial cell. This cell is then grown in culture forming a clone of cells. The foreign DNA spliced into the plasmid is replicated with the rest of the plasmid as the host cell multiplies. In this way, the gene of interest is cloned. A critical step in gene cloning is the identification of the bacterial clone carrying the gene of interest.…

    • 541 Words
    • 3 Pages
    Good Essays
  • Better Essays

    pGLO Lab Report

    • 835 Words
    • 4 Pages

    The plasmid pGLO contains an antibiotic-resistance gene, ampR, and the GFP gene is regulated by the control region of the ara operon. Ampicillin is an antibiotic that kills E. coli, so if E. coli, so if E. coli cells contain the ampicillin-resistance gene, the cells can survive exposure to ampicillin since the ampicillin-resistance gene encodes an enzyme that inactivates the antibiotic. Thus, transformed E. coli cells containing ampicillin-resistance plasmids can easily be selected simply growing the bacteria in the presence of ampicillin-only the transformed cells survive. The ara control region regulates GFP expression by the addition of arabinose, so the GFP gene can be turned on and off by including or omitting arabinose from the culture medium.…

    • 835 Words
    • 4 Pages
    Better Essays
  • Powerful Essays

    Pglo Lab

    • 1283 Words
    • 6 Pages

    Genetic transformation is a process by which competent bacterial cells absorb DNA through their cell envelopes causing a change (i.e. a transformation) of their phenotypes. Some bacteria are naturally competent (able to take up external sources of DNA) and readily take up DNA (e.g. Streptococci), whereas others must be artificially induced to competence (e.g. Escherichia coli). The ability to artificially induce competence in E. coli, has become an invaluable technique for molecular geneticists who wish to genetically engineer DNA molecules.…

    • 1283 Words
    • 6 Pages
    Powerful Essays
  • Better Essays

    Lab 7 & 8 Assignment

    • 1108 Words
    • 4 Pages

    A genomic library is a “collection of recombinant vectors or clones, among which is representative of the entire genome of the organism” (BIMM 101 Lab Manual, 47). In order to create a genomic library, genomic DNA from Vibrio fischeri was first isolated then treated with Sal I restriction enzyme to generate inserts (smaller fragments of DNA). Sal I restriction enzyme was also used to treat the vector plasmid in order to digest the V. fischeri DNA fragments. The inserts and the vector were then ligated together. E.Coli cells were then made competent in order to take up the plasmid DNA by transforming these competent cells with a “ligation mixture to create a population of host bacteria containing different combinations of the ligated inserts and vector” (BIMM 101 Lab Manual, 46). A colony indicated that the cell had taken up the vector. Whether or not that colony contained the genes of interest was determined by screenings such as antibiotic resistance, blue-white color screening, and luminescence. A bioluminescent colony immediately indicated the desired genes and where re-streaked while the plasmids of non-glowing white colonies where further isolated and sequenced for the desired genes.…

    • 1108 Words
    • 4 Pages
    Better Essays
  • Powerful Essays

    Transformation is the manipulation of a bacterial cell's DNA in order to alter the cell's genotype or phenotype by absorbing free DNA from its surroundings. In this lab, pVIB plasmid will be used. A plasmid is a segment of DNA that can incorporate itself into the bacterial DNA. Although is not required for growth of the bacterial cell, plasmids can provide advantages in stressful environments such as the ability to adapt as environmental changes occur. In this lab, we will obtain a better understanding of bacterial transformations using pVIB.…

    • 842 Words
    • 4 Pages
    Powerful Essays
  • Good Essays

    When a bacterium integrates a piece of DNA into its genome, bacterial transformation has occurred. In this experiment bacterial transformation will be done using calcium chloride/heat shock. This is done by incorporating the plasmids into chemically competent cells that were made permeable by the calcium chloride solution and heat shock. In 1928, Frederick Griffith, a physician from London, was he first person to experiment with bacterial transformation. He permanently transformed a safe, nonpathogenic bacterial strain of pneumococcus into a deadly pathogenic strain. [1]…

    • 463 Words
    • 2 Pages
    Good Essays
  • Good Essays

    Gene Transfer Lab Report

    • 939 Words
    • 4 Pages

    Escherichia coli is a bacterium that can affect our health or even kill. Like most bacteria, E. coli is able to change and progress into different forms based on genetic changes that they can go through. One example of this genetic change is shown in the E. coli becoming immune to ampicillin is blood infections. Because ampicillin has been used so frequently to fight the symptoms of an E. coli infection, the bacteria has been able to change itself genetically by producing more of an inhibitor resistant TEM in order to continue it’s genetic line and reproduce causing infections in humans (Walters-Toews, et al. 2011). Another example from the science field would be an experiment that suggests that E. coli is not only becoming resistant to ampicillin, but also other antibiotics including Cotrimoxazole and Cefuroxime (Renal & Urology News, 2007). This experiment is meant to prove that through genetic transfer using plasmid DNA, the E. coli can become bioluminescent and immune to the ampicillin. By adding plasmid DNA to the E. coli cells, the genetic composition of the cells will be different. I predict that the E. coli cells containing no ampicillin will be able to grow colonies. I also predict that the plates with plasmid DNA will show signs of bioluminescence. The plate with ampicillin present with no plasmid DNA will not be able to grow colonies and will not be capable of bioluminescence.…

    • 939 Words
    • 4 Pages
    Good Essays
  • Powerful Essays

    Genetic transformation happens when an organism is altered by the introduction of new genetic information which is merged into the organism’s genome. Bacterial transformation is a type of genetic transformation that was used in lab and mainly used due to the single celled nature of bacteria. In this lab, the engineered pGLO plasmid is integrated into E. Coli bacteria, and adds the genes which code for the proteins GFP in the modified bacteria’s genome (Hanahan, Studies on transformation of Escherichia coli with plasmids, 1983). To see the reaction of this plasmid on the cells, bacteria treated with the plasmid were grown on two separate agar plates containing LB nutrient broth and ampicillin, and another containing LB nutrient broth, ampicillin…

    • 1199 Words
    • 5 Pages
    Powerful Essays
  • Good Essays

    ­ cells are the smallest unit of life that makes up all living organisms, these can be…

    • 1126 Words
    • 5 Pages
    Good Essays
  • Good Essays

    1. Using this key, put the phrases in the correct order to form a plasmid carrying the recombinant DNA.…

    • 608 Words
    • 3 Pages
    Good Essays