The Study of Solar Absorption Air-Conditioning Systems

Topics: Solar thermal energy, Energy, Heating, ventilating, and air conditioning Pages: 14 (4292 words) Published: May 11, 2013
The study of solar absorption air-conditioning systems
V Mittal
Assistant Professor, Mechanical Engineering, BRCM College of Engineering & Technology, Bahal (HR) and Research Scholar, NIT, Kurukshetra (HR)

KS Kasana
Professor, Mechanical Engineering, NIT, Kurukshetra (HR)

NS Thakur
Assistant Professor, Mechanical Engineering, NIT, Hamirpur (HP)

Abstract An air-conditioning system utilizing solar energy would generally be more efficient, cost wise, if it was used to provide both heating and cooling requirements in the building it serves. Various solar powered heating systems have been tested extensively, but solar powered air conditioning systems have received very little attention. Solar powered absorption cooling systems can serve both heating and cooling requirements in the building it serves. Many researchers have studied the solar absorption air conditioning system in order to make it economically and technically viable. But still, much more research in this area is needed. This paper will help many researchers working in this area and provide them with fundamental knowledge on absorption systems, and a detailed review on the past efforts in the field of solar absorption cooling systems with the absorption pair of lithium-bromide and water. This knowledge will help them to start the parametric study in order to investigate the influence of key parameters on the overall system performance. Keywords: solar energy, absorption cooling system, air-conditioning, lithium bromide and water

Solar energy is one of the most available forms of energy on the Earth’s surface, besides; it is very promising and generous. The earth’s surface receives a daily solar dose of 10E+8 KW-hr, which is equivalent to 500 000 billion oil barrels that is one thousand times any oil reserve known to man. The solar energy is collector area dependent, and is a diluted form of energy and is available for only a fraction of the day. Also, its availability depends on several factors such as latitude and sky clearness (Duffie & Beckman 1980. At the same time, its system requires high initial cost. But on the

other hand, it has some attractive features such as its system requiring minimum maintenance and operation cost, and it does not have negative effects on the environment. Another important feature of solar energy is its ability to satisfy rural areas where conventional energy systems might be not suitable or uneconomical. Solar energy is being invested in many forms. The first form is the most familiar and that is using it for supplying domestic hot water for residences which is the most worldwide spread form of solar energy use. Another form is the photovoltaic, and these are special cells that transfer solar energy to electric ones. Also, some power plants are now present that produce electricity from solar energy (e.g. US Pilot Power Plant of 516 degree Celsius average temperature (Friefeld & Coleman 1986) and the Japanese experiment stations of 1MW power output (Tanaska 1989). Some other applications of solar energy being investigated are its use for cooling and heating of buildings. A lot of research is being conducted for this purpose especially in countries where there is high availability of solar energy just like in India. Solar energy is abundant in summer months where there is no heating load, but instead cooling is required. Solar air-conditioning has the advantage of both the supply of the sunshine and the need for refrigeration reaching maximum levels in the same season. As a result, solar air-conditioning is the particularly attractive application for solar energy.

Application of solar energy in cooling
In order to evaluate the potential of solar energy for the different solar cooling systems, a classification has been made by the scientists Best and Orgeta (1998). It is based on the two main concepts – solar thermal technologies for the conversion of solar heat into hot water, and the solar cooling...

References: Alizadeh S, Bahar F & Geoola F. 1979. Design and optimization of an absorption refrigeration system operated by solar energy, Solar Energy, Vol. (22), pp 49-54. Best R & Ortega N. 1998 Solar refrigeration and cooling, World Renewable Energy Congress V, 20-25 September, Florence, Italy II, pp. 685-90. Dai YQ. 1997. Technology and application of LiBr absorption refrigeration In: China, Chinese mechanical engineering industry publication. Duffie, J.A., & Beckman, W.A. 1980. Solar Engineering of Thermal Processes, John Wiley & Sons, New York. Friefeld M., & Coleman G.C. 1986. Testing the US Solar Pilot Plant Receiver, ASME Journal of Solar Energy Engineering, Vol. (108), pp. 146-149. Grassie SL & Sheridan NR. 1977. Modelling of a solar powered absorption air-conditioning system with refrigerant storage, Solar Energy, Vol. (19), pp. 691700. Huang ZC, Xia WH & Ma WB. 1991. A 2-stage LiBr absorption chiller for solar cooling, Proceedings of the Biennial congress of ISES, Denver, Colorado,USA,19-23 August, 1991, Vol.(2), pp. 1643-8. Kreider JF & Krieth F. 1981. Solar systems for space cooling, Solar energy handbook, New York, McGraw-Hill. Li ZF & Sumathy K. 2000. Technology development in the solar absorption air-conditioning systems, Renewable and Sustainable Energy Reviews, Vol. (4), pp. 267-93.
Journal of Energy in Southern Africa • Vol 16 No 4 • November 2005
Continue Reading

Please join StudyMode to read the full document

You May Also Find These Documents Helpful

  • Air Conditioning System Essay
  • Solar Air Conditioning Essay
  • Solar Air Conditioning Essay
  • Essay about Refrigeration And Air Conditioning
  • Air Conditioning Essay
  • Air Conditioning Systems Essay
  • Air Conditioning and Global Warming Essay
  • Essay about Air Conditioning and Heat Pump Systems

Become a StudyMode Member

Sign Up - It's Free