Preview

The production and use of ATP in living organisms

Good Essays
Open Document
Open Document
1007 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
The production and use of ATP in living organisms
Adenosine Triphosphate, also known as ATP, is the molecule responsible for the energy that we, and all other organisms, need to survive. It is produced primarily in the processes of aerobic and anaerobic respiration by oxidative and substrate phosphorylation. 4 molecules of ATP are produced from 4 ADP and 4 inorganic phosphates in glycolysis in the cytoplasm of every cell, by the oxidation of a triose phosphate into two molecules of pyruvate. In anaerobic respiration these are the only 4 ATP molecules produced per molecule of glucose as there is no oxygen available for the link reaction or electron transport chain to occur in the cytoplasm, instead the pyruvate molecules are reduced into either lactate in muscles or ethanol and CO2 in yeast. However 2 ATP molecules are used in the phosphorylation of glucose at the start of glycolysis so the net product of anaerobic respiration is just 2 ATP. In aerobic respiration the pyruvate molecules move into the mitochondrial matrix where they undergo the link reaction, releasing one CO2 molecule and one NADH each. This leaves two acetyl co-enzyme A molecules which enter the Krebs cycle to release another 2 CO2 molecules, 1 ATP, 3 NADH and 1 FADH each. So far we have a net production of 4 ATP (subtracting the 2 used in glycolysis). The electron transport chain is where the majority of ATP is produced. 10 NADH and 2 FADH (produced from glycolysis, link reaction and the Krebs cycle) are oxidised to NAD and FAD, releasing 12 hydrogens. These hydrogens are split into protons and electrons. The electrons are passed from carrier to carrier in the bilayer of the inner membrane of the mitochondrial cristae, releasing energy at each one. This energy is used to pump the protons through the carriers into the intermembrane space, creating a gradient. Due to this gradient, the protons flow from the intermembrane space back into the matrix by ATP Synthase in the inner membrane. This movement of protons allows 28 ADP and 28

You May Also Find These Documents Helpful

  • Good Essays

    Oxidative phosphorylation that takes place in the intermembrane space of the mitochondria sees the formation of ATP as oxygen (O2) acts as an electron acceptor. O2 accepts electrons from FADH2 and NADH and a proton gradient is established by the movement of H+ ions into the matrix. This ‘proton motive force’ drives ATP synthase to phosphorylate ADP and ultimately create ATP.…

    • 985 Words
    • 4 Pages
    Good Essays
  • Good Essays

    Glycolysis is the metabolic pathway responsible for the principle source of ATP in anaerobic microorganisms…

    • 457 Words
    • 2 Pages
    Good Essays
  • Good Essays

    Bio Lab

    • 962 Words
    • 4 Pages

    ATP is generated from aerobic respiration from the use of biosynthetic pathways. Glycolysis is where respiration starts in the cells and produces ATP, NADH, and 2 pyruvate molecules from the oxidation of six carbon carbohydrate and glucose. Even if oxygen is there or not, enzymes are mediated in the cytoplasm. The electron transport chain, chemiosmosis, and aerobic respiration use NADH molecule (which it main purpose is to transport electrons form one molecule to another) for later purposes. The mitochondrial matrix receives pyruvate from the cytoplasm after it crosses over the mitochondrial membrane. When the pyruvate enters the Krebs cycle it goes through many stages of biochemical enzyme-catalyzed reactions. In more detail about the cycle its main purpose is to produce little amounts of ATP by removing carbon dioxide and hydrogen from pyruvate molecules. Within the inner membrane of the mitochondrion the electron transport chain and chemiosmosis synthesis ATP with hydrogen ions which are NADH and FADH2. The Krebs cycle and glycolysis produce less ATP because chemiosmosis synthesizes a great amount of ATP.…

    • 962 Words
    • 4 Pages
    Good Essays
  • Good Essays

    Biochemistry Output

    • 258 Words
    • 2 Pages

    ATP is important in the body because it is the main immediate source of usable energy for the activities of the…

    • 258 Words
    • 2 Pages
    Good Essays
  • Better Essays

    Biochemistry-Metabolism

    • 1252 Words
    • 6 Pages

    triphosphate (ATP) in the body. ATP is essential to the cell and the cellular processes used by the…

    • 1252 Words
    • 6 Pages
    Better Essays
  • Good Essays

    Adenosine triphosphate (ATP) is a multifunctional nucleotide used in cells as a coenzyme. It is often called the "molecular unit of currency" of energy transfer. ATP transports chemical energy within cells for metabolism. It is produced by photo-phosphorylation and cellular respiration and used by enzymes and structural proteins in many cellular processes, including active transport, respiration, and cell division. One molecule of ATP contains three phosphate groups, and it is produced by ATP synthase from inorganic phosphate and adenosine diphosphate (ADP). ATP is used is many organisms and also in different ways. Below are a few ways in which ATP is used.…

    • 774 Words
    • 4 Pages
    Good Essays
  • Powerful Essays

    In cellular respiration some energy is lost as heat but almost half is captured in a form that the cell can use through the synthesis of ATP.…

    • 2577 Words
    • 11 Pages
    Powerful Essays
  • Good Essays

    Cell Work Sheet

    • 850 Words
    • 4 Pages

    This cycle also called the “Krebs cycle”, completes the breakdown of glucose all the way to CO2, one of the waste products off cellular respiration. The enzymes for the citric acid cycle are dissolved in the fluid within mitochondria. Glycolysis and the citric acid cycle generate a small amount of ATP directly. They generate much more ATP indirectly, via redox reactions that transfer electrons from fuel molecules to NAD+, forming NADH.…

    • 850 Words
    • 4 Pages
    Good Essays
  • Powerful Essays

    Unit two Biology

    • 7492 Words
    • 30 Pages

    The oxidation of glucose by means of glycolysis and the lactate pathway is known as anaerobic respiration or lactic fermentation (Figure 2.13). You can probably see that anaerobic respiration only generates a tiny amount of ATP compared with aerobic respiration. None of the ATP that could have been generated in the Krebs cycle or Chapter 2: Cellular respiration and ATP synthesis electron transport chain is made. Instead of the theoretical maximum of 32 molecules of ATP from each molecule of glucose, anaerobic respiration produces only 2. (Remember that the reduced NAD produced in glycolysis is not able to pass on its hydrogens to the electron transport chain – it gives them to pyruvate instead.)…

    • 7492 Words
    • 30 Pages
    Powerful Essays
  • Better Essays

    bull

    • 2121 Words
    • 16 Pages

    respiration is a very efficient process which yields up to 38 molecules of ATP for each…

    • 2121 Words
    • 16 Pages
    Better Essays
  • Good Essays

    Adenosine Triphosphate (ATP), an energy-bearing molecule found in all living cells. Formation of nucleic acids, transmission of nerve impulses, muscle contraction, and many other energy-consuming reactions of metabolism are made possible by the energy in ATP molecules. The energy in ATP is obtained from the breakdown of foods.…

    • 318 Words
    • 2 Pages
    Good Essays
  • Good Essays

    The body needs an increased cardiac output during exercise because the increased consumption of oxygen and nutrients by muscle cells requires more blood supply.…

    • 341 Words
    • 2 Pages
    Good Essays
  • Good Essays

    Atp - an Exemplary Essay

    • 722 Words
    • 3 Pages

    ATP (adenosine triphosphate) is vital to living organisms. It acts as a short-term store of energy in a cell, carrying it from where it is synthesised (e.g. the mitochondria) to where it is needed for biological processes. It is well suited to this job for the following reasons: it is small and soluble (and so can be easily transported around a cell); it is easily broken down to release energy; it can transfer energy to other molecules; and it cannot leave the cell. All of these facts mean that ATP is always available to the cell as an immediate source of energy.…

    • 722 Words
    • 3 Pages
    Good Essays
  • Good Essays

    Living organisms including all plants and animals require energy for their cellular processes. In biological processes, the immediate energy source is often in the form adenosine triphosphate (ATP). The nucleotide ATP maintains both catabolic and anabolic reactions. An example of a catabolic reaction is respiration where large molecules are broken down into smaller ones with energy released. An example of an anabolic reaction is photosynthesis where small molecules are built up into larger ones using energy. ATP is built up from ADP and inorganic phosphate ions (3-4 PO, abbreviated to Pi) by condensation and is then hydrolysed by the enzyme ATPase to ADP and Pi to release energy that can be used for energy requiring reactions such as photosynthesis in plants.…

    • 1087 Words
    • 3 Pages
    Good Essays
  • Powerful Essays

    Cellular respiration is an ATP-producing catabolic process in which the electron receiver is an inorganic molecule. It is the release of energy from organic compounds by chemical oxidation in the mitochondria within each cell. Carbohydrates, proteins, and fats can all be metabolized, but cellular respiration usually involves glucose: C6H12O6 + 6O2 → 6CO2 + 6H2O + 686 Kcal of energy/mole of glucose oxidized. Cellular respiration involves glycolysis, the Krebs cycle, and the electron transport chain. Glycolysis is a catabolic pathway that occurs in the cytosol and partially oxidizes glucose into two pyruvate (3-C). The Krebs cycle occurs in the mitochondria and breaks down a pyruvate (Acetyl-CoA) into carbon dioxide. These two cycles both produce a small amount of ATP by substrate-level phosphorylation and NADH by transferring electrons from substrate to NAD+. The Krebs cycle also produces FADH2 by transferring electrons to FAD. The electron transport chain is located at the inner membrane of the mitochondria and accepts energized electrons from enzymes that are collected during glycolysis and the Krebs cycle, and…

    • 1687 Words
    • 7 Pages
    Powerful Essays