Introduction:
The Grignard reagent is an effective reducing agent that may be used to reduce a ketone to an alcohol. Generally, the Grignard reagent is represented by an alkyl- or aryl-magnesium halide. The nucleophilic Grignard reagent attacks an electrophilic carbon, which results in the formation of a carbon-carbon bond. Forming carbon-carbon bonds are very synthetically useful. The electrophilic carbons found within a carbonyl group are the most likely to be attacked because of their polarity. The Grignard reagent is formed by the reactions between an alkyl or aryl-halide and magnesium. The reaction proceeds via a radical electron transfer. Iodine can also be added to the reaction. The iodine lies on the magnesium and acts a catalyst to help initiate the reaction.
Scheme 1. Formation of the Grignard reagent. The entire formation of the Grignard reagent takes place in diethyl ether. Diethyl ether prevents oxygen and carbon dioxide from reacting with
References: 1. Zubrick, James W. The Organic Chem Lab Survival Manual Chemistry 330 University of Pittsburgh, 2008 2. Bandik, George C. et al The Organic Chemistry Laboratory Experience at the University of Pittsburgh Chemistry 340 Sixth Edition, 2011