Statistical Mechanics

Topics: Thermodynamics, Statistical mechanics, Ludwig Boltzmann Pages: 1 (307 words) Published: February 25, 2014
Statistical mechanics or statistical thermodynamics[note 1] is a branch of physics that applies probability theory, which contains mathematical tools for dealing with large populations, to the study of the thermodynamic behavior of systems composed of a large number of particles. Statistical mechanics provides a framework for relating the microscopic properties of individual atoms and molecules to the macroscopic bulk properties of materials that can be observed in everyday life, therefore explaining thermodynamics as a result of classical and quantum-mechanical description of statistics and mechanics at the microscopic level. Statistical mechanics provides a molecular-level interpretation of macroscopic thermodynamic quantities such as work, heat, free energy, and entropy. It enables the thermodynamic properties of bulk materials to be related to the spectroscopic data of individual molecules. This ability to make macroscopic predictions based on microscopic properties is the main advantage of statistical mechanics over classical thermodynamics. Both theories are governed by the second law of thermodynamics through the medium of entropy. However, entropy in thermodynamics can only be known empirically, whereas in statistical mechanics, it is a function of the distribution of the system on its micro-states. Statistical mechanics was initiated in 1870 with the work of Austrian physicist Ludwig Boltzmann, much of which was collectively published in Boltzmann's 1896 Lectures on Gas Theory.[1] Boltzmann's original papers on the statistical interpretation of thermodynamics, the H-theorem, transport theory, thermal equilibrium, the equation of state of gases, and similar subjects, occupy about 2,000 pages in the proceedings of the Vienna Academy and other societies. The term "statistical thermodynamics" was proposed for use by the American thermodynamicist and physical chemist J. Willard Gibbs in 1902. According to Gibbs, the term "statistical", in the context of...
Continue Reading

Please join StudyMode to read the full document

You May Also Find These Documents Helpful

  • Career Paper for Automotive Mechanic
  • Fluid Mechanics Notes Research Paper
  • Fracture Mechanics Essay
  • Mechanics at Its Finest: an Annotated Bibliography Essay
  • Automobile Repair and Mechanics Essay
  • A Student Survey of Mechanics Test Data Essay
  • Mechanics Essay
  • Fluid Mechanics Essay

Become a StudyMode Member

Sign Up - It's Free