top-rated free essay

Sickel Cell Anemia

Oct 08, 1999 1300 Words
Sickle Cell anemia is a group of inherited red blood cell disorders, or a collection of recessive genetic disorders characterized by a hemoglobin variant called Hb S. Normal red blood cells are round like doughnuts, and they move through small blood tubes in the body to deliver oxygen. Sickle red blood cells become hard, sticky and shaped like sickles used to cut wheat. When these hard and pointed red cells go through the small blood tube, they clog the flow and break apart. This can cause pain, damage and a low blood count, or anemia. There is a substance in the red cell called hemoglobin that carries oxygen inside the cell. One little change in this substance causes the hemoglobin to form long hard rods in the red cell when it gives away oxygen. These rigid rods change the red cell into a sickle shape. <br>

<br>For such a minuscule
mistake, the consequences are tragic. At the time of conception, a person receives one set of genes from the mother and a corresponding set of genes from the father. Sickle cell disease is a condition that is determined by a single pair of genes. The genes are those which control the production of hemoglobin in red cells. It is a member of the globin gene family, a group of genes involved in oxygen transport, and hemoglobin binds oxygen in the lungs and delivers it to the other tissues. Most people have two normal genes for hemoglobin. Some people carry one normal gene and one gene for sickle hemoglobin. This is called "sickle cell trait". <br>

<br>These people are normal in almost all respects. Problems from having a single sickle cell gene develop only under very unusual conditions. People who inherit two genes for sickle hemoglobin (one from each parent) have sickle cell disease. It is believed that individuals with African and Mediterranean ancestry have unusually high frequency of sickle cell trait due to the reduced mortality from malaria infections when compared with individuals who do not carry the hemoglobin variant <br>

<br>Red blood cells carrying the abnormal gene (hemoglobin S) travel normally through circulation until they are deoxygenated. When this happens the hemoglobin S molecules form long, rigid rods, causing the normally donut-shaped cells to stiffen and distort into a sickle shape. <br>

<br>These sickle cells have a very hard time moving through the small capillaries. As blood flow slows, the cells lining the vessel walls become sticky, attracting the sickle cells like flypaper and causing massive circulatory gridlock. Although these changes are partly reversible through the normal process of reoxygenation, by the time this reversal takes place much damage has already been done. The spleen, acting as a policeman, traps and destroys many of the abnormal sickle cells, resulting in rapid turnover of red blood cells and chronic anemia. <br>

<br>This anemia results in fatigue and a number of the following problems;pain episodes, strokes, susceptibility to bacterial infections, particularly in children, leg ulcers, bone damage, yellow eyes or jaundice, early gallstones, lung blockage, increased infections, kidney damage and loss of body water in urine, painful erections in men, blood blockage in the spleen or liver, eye damage, low red blood cell counts (anemia), and delayed growth. <br>

<br>Each year in the US, an average of 75,000 hospitalizations are due to sickle cell disease, costing approximately $475 million. Sickle cell disease is also associated with significant mortality. Among children, the primary causes of mortality are bacterial infections and stroke. In adults, it is more difficult to attribute specific causes to mortality, but it appears that individuals with more indicative disease are at risk for early mortality. <br>

<br>Tremendous advances in detection and treatment mean that most patients now survive to adulthood, many into their 50s and 60s and beyond. Some patients lead fairly normal lives, attending school and work with only occasional pain episodes and only slowly progressive organ damage. Treatments, such as penicillin prophylaxis, have been developed that can significantly reduce the rate of disease and mortality of sickle cell disease patients. For this reason, several US organizations have supported screening all newborns for sickle cell disease. As a result, almost every US state and territory now screen their newborn infants for this blood disorder. Several test methods are available to detect sickle cell disease. Most tests examine an individual's hemoglobin, although DNA testing is also now available. As a result of newborn screening, better medical care, parent education and penicillin prophylaxis, the mortality rate due to sickle cell is decreasing <br>

<br>There are several test methods available. These tests detect the beta globin gene product and are performed on blood samples, including cord blood and dried blood spots, which are collected at any time following birth. DNA testing can also be performed. DNA samples can be collected either prenatally, or postnatally, may be used for DNA testing. <br>

<br>The Agency for Health Care Policy and Research (AHCPR) has recommended hemoglobin electrophoresis, isoelectric focusing, and high-performance liquid chromatography as accurate methods for newborn screening. They state that DNA analysis may also be used, but that it is costlier than the other methods. AHCPR has also recommended that all diagnostic laboratories participate in quality assurance and proficiency testing programs, regardless of the type of test they perform. The Centers for Disease Control and Prevention currently conducts quality assurance evaluations of state newborn screening programs. <br>

<br>Tests used in the US however, may not be cost-effective for sickle cell diagnosis in other developing countries. In Kenya, another method, peripheral blood film (PBF) has been confirmed to be the most cost-effective diagnostic method. The sensitivity of PBF is 76%, and specificity is around 99.7%. <br>

<br>Here are a few key history notes. In 1972, the congress passed the National Sickle Cell Anemia Control Act, which called for screening programs. In 1975, the first US state began a newborn screening program for sickle cell disease. However, it was the late 1980's before most states were performing sickle cell screening on newborns. This was most likely due to the publication of a study in 1986 that showed that oral penicillin could significantly reduce the rate and mortality of the disease in children. <br>

<br>In 1987, the National Institutes of Health held a conference that supported early diagnosis by newborn screening as being beneficial to infants with sickle cell disease. In 1993, another US agency, the Agency for Health Care Policy and Research (AHCPR), also concluded that newborn screening would significantly reduce mortality and problems in infants. AHCPR further recommended that "all infants should be tested for sickle cell disease, regardless of race (universal screening) since targeting high risk racial or ethnic groups would not identify all affected infants due to the inability to reliably determine the infants' race by appearance, name or self-report." <br>

<br>After screening there are several things a person can do to help slow and prevent complications. Take the vitamin folic acid daily helps make new red cells, along with iron. Daily penicillin until age six can prevent serious infections. Keep you body well hydrated, drinking plenty of water daily (8-10 glasses for adults). Avoid too hot or too cold temperatures, over exertion and stress. Get plenty of rest, and most important, get regular check-ups from knowledgeable health care providers. <br>

<br>Patients and families should watch for the following conditions that need urgent medical evaluation: fever, chest pain, shortness of breath, increasing tiredness, abdominal swelling, unusual headache, any sudden weakness or loss of feeling, pain that will not go away with home treatment, and sudden vision change. Following all the previous advice should allow anyone with the disease to lead a fairly normal life.

Cite This Document

Related Documents

  • Sickle Cell Anemia

    ...Sickle Cell Anemia Sickle cell anemia or also known as sickle cell disease is a hereditary genetic disease defined by the presence of odd shaped crescent-shaped red blood cells instead of the regular round disc like shape cells. Red blood cells transport oxygen from the lungs to various other organs and tissues with the help of a protein calle...

    Read More
  • Sickle Cell Anemia

    ...The sickle cell disease is an inherited blood disorder that affects red blood cells. People with sickle cell have red blood cells that have mostly hemoglobin's, Sometimes these red blood cells become sickle-shaped or crescent shaped and have trouble going through small blood vessels. When sickle-shaped cells block small blood vessels, les...

    Read More
  • Sickle Cell Anemia

    ...Sickle Cell Anemia Pathophysiology: Sickle cell anemia is a disease passed down through families in which red blood cells form an abnormal crescent shape. The “sickling” occurs because of a mutation in the hemoglobin gene. Sickle cells are stiff and sticky. They tend to block blood flow in the blood vessels of the limbs and organs. B...

    Read More
  • Sickle Cell Anemia

    ...Anemia is a condition in which there is lower than normal number of red blood cells or hemoglobin within a person, consequently decreasing the amount of oxygen being carried to the rest of the body. Causes of such a condition are usually insufficient amounts of iron, blood loss, lack of red blood cell production, or high rates of red blood ce...

    Read More
  • Sickle Cell Anemia

    ...Sickle cell anemia Sickle cell anemia is a disease found right here in America, but in low levels compare to most of the world. The rate for disease is around five times greater in certain places in Africa. Sickle-Cell Anemia is often referred to as the “Negro-Inherited” disease, but that is incorrect. Although African Americans have a hig...

    Read More
  • Sickle Cell Anemia

    ...Sickle Cell Disease: Journal Article Review Kelsey Bowman Bio 204: Anatomy and Physiology 2 Zellers Sickle cell disease is an autosomal recessive genetic disorder most common in African Americans, which results from a mutation affecting the amino acid sequence of the beta chains of hemoglobin molecules in red blood cells. T...

    Read More
  • Sickle-Cell Anemia

    ...Sickle-Cell Anemia is an inherited, chronic blood disease in which the body produces abnormally shaped red blood cells. When the blood cells become crescent/sickle shaped, they are unable to deliver adequate amounts of oxygen to other cells. Also, these unusual “sickle” cells block blood pathways to the limbs and organs, limiting the amount ...

    Read More
  • Sickle Cell Anemia

    ...Sickle Cell Anemia Sickle cell anemia is an inherited blood disorder, identified by the sickle shape of red blood cells which carry less oxygen and break easily, causing anemia. The sickling trait, the less serious form, occurs from the inheritance of only one parent; however, both parents must exhibit the disease in order for full symptoms t...

    Read More

Discover the Best Free Essays on StudyMode

Conquer writer's block once and for all.

High Quality Essays

Our library contains thousands of carefully selected free research papers and essays.

Popular Topics

No matter the topic you're researching, chances are we have it covered.