Preview

Section 23 Basic Differentiation Formulas2010 Kiryl

Better Essays
Open Document
Open Document
1212 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Section 23 Basic Differentiation Formulas2010 Kiryl
Section 2.3 Basic Differentiation Formulas

2010 Kiryl Tsishchanka

Basic Differentiation Formulas
DERIVATIVE OF A CONSTANT FUNCTION: d (c) = 0 dx c′ = 0

or

Proof: Suppose f (x) = c, then f (x + h) − f (x) c−c 0
= lim
= lim = lim 0 = 0 h→0 h→0 h→0 h h→0 h h f ′ (x) = lim
EXAMPLES:


1 = 0,



5 = 0,



0 = 0,



(−7/9) = 0,


1+ 5
2



π = 0,



= 0,


(x 3 x + 1 − x4/3 )′ = 0

THE POWER RULE: If n is a positive integer, then d n
(x ) = nxn−1 dx or

(xn )′ = nxn−1

Proof: Before we prove this result rigorously, let us consider cases n = 2, 3, 4.
If n = 2, then x 2 − a2
(x − a)(x + a) f (x) − f (a)
= lim
= lim
= lim (x + a) = a + a = 2a x→a x − a x→a x→a x→a x−a x−a f ′ (a) = lim
If n = 3, then

x 3 − a3
(x − a)(x2 + xa + a2 ) f (x) − f (a)
= lim
= lim x→a x − a x→a x→a x−a x−a

f ′ (a) = lim

= lim (x2 + xa + a2 ) = a2 + a · a + a2 = 3a2 x→a If n = 4, then f (x) − f (a) x 4 − a4
(x − a)(x3 + x2 a + xa2 + a3 )
= lim
= lim x→a x→a x − a x→a x−a x−a f ′ (a) = lim

= lim (x3 + x2 a + xa2 + a3 ) = a3 + a2 · a + a · a2 + a3 = 4a3 x→a In general, we have f (x) − f (a) x n − an
(x − a)(xn−1 + xn−2 a + . . . + xan−2 + an−1 )
= lim
= lim x→a x→a x − a x→a x−a x−a f ′ (a) = lim

= lim (xn−1 + xn−2 a + . . . + xan−2 + an−1 ) = nan−1 x→a 1

Section 2.3 Basic Differentiation Formulas

2010 Kiryl Tsishchanka

EXAMPLES:
(a) If f (x) = x2 , then f ′ (x) = (x2 )′ = [n = 2] = 2x2−1 = 2x1 = 2x.
(b) If f (x) = x9 , then f ′ (x) = (x9 )′ = [n = 9] = 9x9−1 = 9x8 .
(c) If f (x) = x, then f ′ (x) = (x1 )′ = [n = 1] = 1 · x1−1 = 1 · x0 = 1 · 1 = 1.
THE POWER RULE (GENERAL VERSION): If n is any real number, then d n
(x ) = nxn−1 dx (xn )′ = nxn−1

or

EXAMPLES:
(a) If f (x) = x−4 , then f ′ (x) = (x−4 )′ = [n = −4] = (−4)x−4−1 = −4x−5 .
1
1
(b) If f (x) = , then f ′ (x) = (x−1 )′ = [n = −1] = (−1)x−1−1 = −x−2 = − 2 . x x

1
1
1
(c) If f (x) = x, then f ′ (x) = (x1/2 )′ = [n = 1/2] = x1/2−1 = x−1/2 = √ .
2
2
2 x

(d) If f (x) = x2 3 x, then
7
f ′ (x) = (x2 · x1/3 )′ =

You May Also Find These Documents Helpful

Related Topics