Safety Evaluation of Ocular Drug Delivery Formulations: Techniques and Practical Considerations

Topics: Retina, Eye, Pharmacology Pages: 30 (9655 words) Published: May 9, 2012
Toxicologic Pathology Safety Evaluation of Ocular Drug Delivery Formulations: Techniques and Practical Considerations Brian G. Short Toxicol Pathol 2008; 36; 49 DOI: 10.1177/0192623307310955 The online version of this article can be found at:

Published by:

On behalf of:

Society of Toxicologic Pathology

Additional services and information for Toxicologic Pathology can be found at: Email Alerts: Subscriptions: Reprints: Permissions:

Downloaded from at University of Aston on February 10, 2010

Toxicologic Pathology, 36:49-62, 2008 Copyright © 2008 by Society of Toxicologic Pathology ISSN: 0192-6233 print / 1533-1601 online DOI: 10.1177/0192623307310955

Safety Evaluation of Ocular Drug Delivery Formulations: Techniques and Practical Considerations BRIAN G. SHORT From Allergan, Inc., Irvine, California, USA. ABSTRACT Development of new drug candidates and novel delivery techniques for treatment of ocular diseases has recently accelerated. Treatment of anteriorsegment diseases has witnessed advances in prodrug formulations and permeability enhancers. Intravitreal, subconjunctival, and periocular routes of administration and sustained-release formulations of nanoparticles and microparticles, as well as nonbiodegradable and biodegradable implants to deliver drugs to the posterior segment of the eye, are becoming popular therapeutic approaches. Without adequate regulatory guidance for ocular drugs, such routes of administration and novel formulations can pose unique challenges to those involved in designing nonclinical programs, including considering clinical and nonclinical factors and choosing species, strains, and ocular toxicity parameters. Toxicologic pathologists also contribute practical experience to evaluating morphological effects of these novel formulations. Lastly, understanding species’ anatomical differences is useful for interpreting toxicological and pathological responses to the eye and is important for human risk assessment of these important new therapies for ocular diseases. Keywords: Ocular drug delivery; intravitreal; subconjunctival; periocular; ocular implant.

INTRODUCTION Millions of people suffer from a wide variety of ocular diseases, many of which lead to visual impairment and ocular blindness and cost the federal government approximately $4 billion annually (Clark and Yorio, 2003). Certain ocular diseases are quite rare, whereas others, such as cataracts, age-related macular degeneration (AMD), and glaucoma, are very common, especially in the aging population (Table 1). A rapid expansion of new technologies in ocular drug delivery and new drug candidates, including biologics, to treat these challenging diseases in the anterior and posterior segments of the eye have recently emerged. These approaches are necessary because the eye has many unique barriers to drug delivery (Figure 1). Current routes of administration include but are not limited to topical administration, systemic administration, intravitreal injections, and intraocular implants, each of which has its own set of complications and disadvantages (Figure 2). Ocular bioavailability after topical ocular eyedrop administration, the most common form of ocular medication, is less than 5% and often less than 1%, and therefore, only the diseases of the anterior segment of the eye can be treated with eyedrops. Blood-ocular barriers, Address correspondence to: Brian G. Short, Allergan, Inc., 2525 Dupont Dr. RD-2A, Irvine, CA 92612. Abbreviations: AMD, age-related macular degeneration; CNTF, ciliary neurotrophic factor; DDS, drug delivery system; ECT, encapsulated cell technology; ERG, electroretinogram; EVA, ethylene vinyl acetate; FIHS,...

References: Aronin, N. (2006). Target selectivity in mRNA silencing. Gene Ther 13, 509-16. Avalos, J., Jacobs, A., and Wilkin, J. K. (1997). Toxicity testing for ocular drug products. In Advances in Ocular Toxicology (K. Green et al., eds., pp. 261-8). Plenum, New York. Bourges, J. L., Bloquel, C., Thomas, A., Froussart, F., Bochot, A., Azan F., Gurny, R., BenEzra, D., and Behar-Cohen, F. (2006) Intraocular implants for extended drug delivery: therapeutic applications. Adv Drug Deliv Rev 58, 1182-1202. Bourges, J. L., Gautier, S. E., Delie, F., Bejjani, R. A., Jeanny, J., Gurny, R., BenEzra, D., and Behar-Cohen, F. (2003). Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Invest Opth Vis Sci 44, 3562-9. Clark, A. F, and Yorio, T. (2003). Ophthalmic drug discovery. Nature Rev 2, 448-59. Davis, J. L., Gilger, B. C., and Robinson, M. R. (2004). Novel approaches to ocular drug delivery. Curr Opin Mol Therap 6:195-205. Dureau, P., Bonnel, S., Menasche, M., Dufier, J. L., and Abitbol, M. (2001). Quantitative analysis of intravitreal injections in the rat. Curr Eye Res 22, 74-7. Eljarrat-Binstock, E., and Domb, A. J. (2006). Iontophoresis: a non-invasive ocular drug delivery. J Controlled Release 110, 479-89. Fattal, E., and Bochot, A. (2006). Ocular delivery of nucleic acids: antisense oligonucleotides, aptamers, and siRNA. Adv Drug Deliv Rev 58, 1203-23. Ferrara, N., Damico, L., Shams, N., Lowman, H., and Kim, R. (2006). Development of ranibizumab, an anti-vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration. Retina 26, 859-70. Friedrich, S. (2003). Mathematical modeling of drug distribution in the vitreous humor. In Ophthalmic Drug Delivery Systems (A. K. Mitra, ed., p. 195). Marcel Dekker, New York. Ghate, D., and Edelhauser, H. F. (2006). Ocular drug delivery. Expert Opin Drug Deliv 3, 275-87.
Downloaded from at University of Aston on February 10, 2010
Herrero-Vanrell, R., and Refojo, M. F. (2001). Biodegradable microspheres for vitreoretinal drug delivery. Adv Drug Deliv 52, 5-16. Heywood R., and Gopinath C. (1990). Morphological assessment of visual function. Tox Path 18, 204-217. Holland, J. M. (2005). Morphometric comparisons between cynomolgus monkeys and NZW rabbit eyes: implications for intravitreal implant studies. Data on file, Allergan, Inc, Irvine, CA. Hsu, J. (2007). Drug delivery methods for posterior segment disease. Curr Opin Ophthalmol 18, 235-9. Jaffe, G. L., Martin, D., Callanan, D., Pearson, A., Levy, B., Comsock, T., and Fluocinolone Acetonide Study Group. (2006). Fluocinolone acetonide: implant (retisert) for noninfectious posterior uveitis. Ophthalmology 113, 1020-7. Kim, H., Csaky, K. G., Gilger, B. C., Dunn, J. P., Lee, S. S., Tremblay, M., De Monasterio, F., Tansey, G., Yuan, P., Bungay, P. M., Lutz, R. J., and Robinson, M. R. (2005). Preclinical evaluation of a novel episcleral cyclosporine implant for ocular graft-versus-host disease. Invest Ophthalmol Vis Sci 46, 655-62. Kim, H., Csaky, K. G., Gravlin, L., Yuan, P., Lutz, R. J., Bungay, P. M., Tansey, G., De Monasterio, F., Potti, G. K., Grimes, G., and Robinson, M. R. (2006). Safety and pharmcokinetics of a preservative-free triamcinolone acetonide formulation for intraitreal administration. Retina 26, 523-30. Koch, F., and Kreiger, A. (1994). A light and electron microscopic study of the healing of pars plana incisions in the rhesus monkey. Graefe’s Arch Clin Exp Ophthalmol 232, 47-56. Kuppermann, B. D., Blumendranz, M. S., Haller, J. A., Williams, G. A., Weinberg, D. V., Chou, C., and Whitcup, S. M. (2007). Randomized controlled study of an intravitreous dexamethasone drug delivery system in patients with persistent macular edema. Arch Ophthalmol 125, 309-17. Latendresse, J. R., Warbrittion, A. R, Jonassen, H., and Creasy, D. M. (2002). Fixation of testes and eye using a modified Davison’s fluid: comparison with Bouin’s fluid and conventional Davidson’s fluid. Toxicol Pathol 30, 524-33. Leblanc, B., Jezequel, S., Davies, T., Hanton, G., and Taradach, C. (1998). Binding of drugs to eye melanin is not predictive of ocular toxicity. Reg Toxicol Pharmacol 28, 124-132. Leeds, J. M., Henry, S. P., Bistner, S., Scherrill, S., Williams, K., and Levin, A. A. (1998). Pharmacokinetics of an antisense oligonucleotide injected intravitreally in monkeys. Drug Metab Dispos 26, 670-5. Leeds, J. M., Henry, S. P., Truong, L., Zutshi, A., Levin, A. A., and Kornbrust, D. (1997). Pharmacokinetics of a potential human cytomegalovirus therapeutic, a phosphorothioate oligonucleotide, after intravitreal injection in the rabbit. Drug Metab Dispos 25, 921-6. Lucentis (ranibizumab) Pharmacology Review (2006). Retrieved May 22, 2007, from Drugs@FDA Web site, 125156s0000_Lucentis_PharmR.pdf Macugen (pegaptanib sodium) Pharmacology Review (2004). Retrieved May 22, 2007, from Drugs@FDA Web site, 21-756_Macugen_pharmr.pdf McGee, D. H., Dembinska, O., and Gruebbel, M. (2005). Evaluation of triamcinolone acetonide following intravitreal injection in New Zealand white rabbits. Int J Toxicol 24, 419-25. Micera, A., Stampachiacchiere, B., Aronni, S., Serapiao dos Santos, M., and Lambiase, A. (2005). Toll-like receptors and the eye. Curr Opin Allergy Clin Immunol 5, 451-8.
Morris, B., Imrie, F., Armbrecht, A., and Dhillon, B. (2007). Age-related macular degeneration and recent developments: new hope for old eyes? Postgrad Med J 83, 301-7. Morrison, V. L., Koh, H. J., Cheng, L., Bessho, K., Davison, M. C., and Freeman, W. R. (2006). Intravitreal toxicity of the kenalog vehicle (benzyl alcohol) in rabbits. Retina 26, 339-44. Myles, M. E., Neumann, D. M., and Hill, J. M. (2005). Recent progress in ocular drug delivery for posterior segment disease: emphasis on transcleral iontophoresis. Adv Drug Deliv Rev 57, 2063-79. Ng, E. W., and Adamis, A. P. (2006). Anti-VEGF aptamer (pegaptanib) therapy for ocular vascular diseases. Ann N Y Acad Sci 1082, 151-71. Okabe, J., Kimura, H., Kunou, N., Okabe, K., Kato, A., and Ogura, Y. (2003). Biodegradable intrascleral implant for sustained intraocular delivery of betamethasone phosphate. Invest Ophthalmol Visual Sci 44, 740-4. Pearson, P. A., Jaffe, G. J., Martin, D. F., Cordahi, G. J., Grossniklaus, H., Schmeisser, E. T., and Ashton, P. (1996). Evaluation of a delivery system providing long-term release of cyclosporine. Arch Ophthalmol 114, 311-7. Perry, C. M., and Balfour, J. A. (1999). Fomiversen. Drugs 57, 375-80. Retisert (Fluocinolone Acetonide Intravitreal Implant) Pharmacology Review (2004). Retrieved May 22, 2007, from Drugs@FDA Web site, http://www Samuelson, D. A. (1999). Ophthalmic anatomy. In Veterinary Ophthalmology (3rd edition, K. Gelatt, ed., p. 111). Lippincott Williams & Wilkins, Philadelphia, PA. Sinha, D. P., Cartwright, M. E., and Johnson, R. C. (2006). Incidental mononuclear cell infiltrate in the uvea of cynomolgus monkeys. Toxicol Pathol 34, 148-51. Smith, T. J., Pearson, A., Blandford, D. L., Brown, J. D., Goins, K. A., Hollins, J. L., Schmeisser, E. T., Glavinos, P., Baldwin, L. B., and Ashton, P. (1992). Intravitreal sustained-release ganciclovir. Arch Ophthalmol 110, 255-8. Tao, W. (2006). Application of encapsulated cell technology for retinal degenerative diseases. Expert Opin Biol Ther 6, 717-26. Theng, J. T. S., Ei, T. S., Zhou, L., Lam, K. W., and Chee, S. P. (2003). Pharmacokinetic and toxicity study of an intraocular cyclosporine DDS in the anterior segment of rabbit eyes. Invest Ophthalmol Visual Sci 44, 4895-9. Vitravene (fomiversen) Pharmacology/Toxicology Review and Evaluation (1998). Retrieved May 22, 2007, from Drugs@FDA Web site http://www Weir, A., Chambers, W., Chen, C., Chen, Z., Mukherjee, A., and Yang, J. (1999). Considerations for the nonclinical development of intravitreal drug products. Toxicologist 18, 323 (Abstract 1524). Whiteley, H. E., and Peiffer, R. L. (2002). The eye. In Handbook of Toxicologic Pathology (2nd ed., W. M. Haschek, C. G. Rousseaux, and M. A. Wallig, eds., pp. 539-84). Academic Press, San Diego, CA. Yasukawa, T., Ogura, Y., Kimura, H., Sakurai, E., and Tabata, Y. (2006). Drug delivery from ocular implants. Expert Opin Drug Deliv 3, 261-73. Younis, H. S., Picotti, J. R., Slim, R. M., Joniken, M., Burns-Nass, L. A., Heward, J., and Evering, W. (2007). Safety assessment of a VEGF receptor tyrosine kinase inhibitor, AG-023845, in cynomolgus monkeys following sub-Tenon ocular administration. Poster presentation, 8th Scientific Meeting of the Association for Ocular Pharmacology, February 9-11, San Diego, CA.
Downloaded from at University of Aston on February 10, 2010
Continue Reading

Please join StudyMode to read the full document

You May Also Find These Documents Helpful

  • Drug Safety Essay
  • Drugs Essay
  • Global Intranasal Drug Delivery Market Essay
  • Liposome an Advantage in Drug Delivery Essay
  • Program Evaluation and Review Technique Essay
  • Drug Delivery Essay
  • Evaluation technique Essay
  • Evaluation of Safety Performance Essay

Become a StudyMode Member

Sign Up - It's Free