Renewable Energy

Topics: Renewable energy, Energy development, World energy resources and consumption Pages: 34 (13893 words) Published: October 14, 2014
Energy Economics 40 (2013) S12–S23

Contents lists available at ScienceDirect

Energy Economics
journal homepage: www.elsevier.com/locate/eneco

On the economics of renewable energy sources
Ottmar Edenhofer a,b,c,⁎, Lion Hirth a,d, Brigitte Knopf a, Michael Pahle a, Steffen Schlömer a, Eva Schmid a, Falko Ueckerdt a a

Potsdam Institute for Climate Impact Research, P.O. Box 601203, 14412 Potsdam, Germany Economics of Climate Change, Technische Universität Berlin, Straße des 17, Juni 145, 10623 Berlin, Germany Mercator Research Institute on Global Commons and Climate Change, Torgauer Straße 12-15, 10829 Berlin, Germany d Vattenfall GmbH, Chausseestraße 23, 10961 Berlin, Germany b c

a r t i c l e

i n f o

a b s t r a c t
With the global expansion of renewable energy (RE) technologies, the provision of optimal RE policy packages becomes an important task. We review pivotal aspects regarding the economics of renewables that are relevant to the design of an optimal RE policy, many of which are to date unresolved. We do so from three interrelated perspectives that a meaningful public policy framework for inquiry must take into account. First, we explore different social objectives justifying the deployment of RE technologies and review model-based estimates of the economic potential of RE technologies, i.e. their socially optimal deployment level. Second, we address pivotal market failures that arise in the course of implementing the economic potential of RE sources in decentralized markets. Third, we discuss multiple policy instruments curing these market failures. Our framework reveals the requirements for an assessment of the relevant options for real-world decision makers in the field of RE policies. This review makes it clear that there are remaining white areas on the knowledge map concerning consistent and socially optimal RE policies. © 2013 Elsevier B.V. All rights reserved.

Available online 21 September 2013 JEL classification: Q21 Q28 Q42 Q54 Q55 D47 Keywords: Energy Mitigation Integrated assessment modeling Variable renewables Electricity market design Renewable policy

1. Introduction and motivation The use of renewable energy (RE) sources has grown rapidly in recent years. Approximately half of the electricity-generating capacity installed globally between 2008 and 2009 draws on RE sources (IPCC, 2011). Although RE supplied 16.7% of final global energy consumption in 2010 – split evenly between traditional biomass and modern RE – fossil fuels still provided the lion's share at 80.6%, with the final 2.7% being generated by nuclear power (REN21, 2012). Yet, for all sectors of the energy-system a large variety of technically viable RE solutions have been developed that are theoretically capable of substituting fossil-fuel-based technologies. Recent assessments indicate that the technical potential of RE sources, i.e. the amount of RE output obtainable through the full implementation of demonstrated technologies or practices, is substantially higher than global energy demand (IPCC, 2011). The technical potential therefore does not limit the accelerated use of ⁎ Corresponding author at: Potsdam Institute for Climate Impact Research, P.O. Box 601203, 14412 Potsdam, Germany. Tel.: +49 331 288 2565; fax: +49 331 288 2570. E-mail addresses: ottmar.edenhofer@pik-potsdam.de (O. Edenhofer), lion.hirth@vattenfall.de (L. Hirth), knopf@pik-potsdam.de (B. Knopf), michael.pahle@pik-potsdam.de (M. Pahle), steffen.schloemer@pik-potsdam.de (S. Schlömer), eva.schmid@pik-potsdam.de (E. Schmid), ueckerdt@pik-potsdam.de (F. Ueckerdt). 0140-9883/$ – see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.eneco.2013.09.015

RE sources; however, it is a poor indicator for the net social benefits of the deployment of RE technologies. The metric is hence not capable of guiding the policy-maker with regard to the design of an optimal RE policy, which becomes ever more urgent as renewables leave...

References: Arvizu, D., Bruckner, T., Chum, H., Edenhofer, O., Estefen, S., Faaij, A., Fischedick, M., Hansen, G., Hiriart, G., Hohmeyer, O., Hollands, K.G.T., Huckerby, J., Kadner, S., Killingtveit, Å., Kumar, A., Lewis, A., Lucon, O., Matschoss, P., Maurice, L., Mirza, M., Mitchell, C., Moomaw, W., Moreira, J., Nilsson, L.J., Nyboer, J., Pichs-Madruga, R., Sathaye, J., Sawin, J., Schaeffer, R., Schei, T., Schlömer, S., Seyboth, K., Sims, R., Sinden, G., Sokona, Y., von Stechow, C., Steckel, J., Verbruggen, A., Wiser, R., Yamba, F., Zwickel, T., 2011. Technical summary. In: Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., Stechow, C.v. (Eds.), IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Borenstein, S., 2008. The market value and cost of solar photovoltaic electricity production. CSEM Working Paper 176. Borenstein, S., 2012. The private and public economics of renewable electricity generation. J. Econ. Perspect. 26 (1), 67–92. Braun, F.G., Schmidt-Ehmcke, J., Zloczysti, P., 2010. Innovative activity in wind and solar technology: empirical evidence on knowledge spillovers using patent data. DIW Berlin Discussion Paper No. 993 (http://papers.ssrn.com/sol3/papers.cfm?abstract_id= 1633875). Chum, H., Faaij, A., Moreira, J., Berndes, G., Dhamija, P., Dong, H., Gabrielle, B., Goss Eng, A., Lucht, W., Mapako, M., Masera Cerutti, O., McIntyre, T., Minowa, T., Pingoud, K., 2011. Bioenergy. In: Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., Stechow, C.v. (Eds.), IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. International, U.S. and E.U. climate change control scenarios: results from EMF 22 [special issue]. In: Clarke, L., Böhringer, C., Rutherford, T.F. (Eds.), Enegy Economics, 31 (Supplement 2), pp. S63–S306. Cramton, P., Ockenfels, A., 2012. Economics and design of capacity markets for the power sector. Z. Energiewirtschaft 36, 113–134. Cramton, P., Stoft, S., 2006. The Convergence of Market Designs for Adequate Generating Capacity. http://www.cramton.umd.edu/papers2005-2009/cramton-stoft-marketdesign-for-resource-adequacy.pdf. Creutzig, F., Popp, A., Plevin, R., Luderer, G., Minx, J., Edenhofer, O., 2012a. Reconciling topdown and bottom-up modeling on future bioenergy deployment. Nat. Clim. Chang. 2, 320–327. Creutzig, F., von Stechow, C.D.K., Hunsberger, C., Bauer, N., Popp, A., Edenhofer, O., 2012b. Can bioenergy assessments deliver? Econ. Energy Environ. Policy 1 (2), 65–82. DeCesaro, J., Porter, K., 2009. Wind energy and power system operations: a review of wind integration studies to date. NREL Subcontract Report SR-550-47256. Edenhofer, O., Carraro, C., Hourcade, J.-C., Neuhoff, K., Luderer, G., Flachsland, C., Jakob, M., Popp, A., Steckel, J., Strohschein, J., Bauer, N., Brunner, S., Leimbach, M., Lotze-Campen, H., Bosetti, V., Cian, E.d., Tavoni, M., Sassi, O., Waisman, H., Crassous-Doerfler, R., Monjon, S., Dröge, S., Essen, H.v., Río, P.d., Türk, A., 2009. RECIPE — The Economics of Decarbonization. Synthesis Report. Edenhofer, O., Knopf, B., Barker, T., Baumstark, L., Bellevrat, E., Chateau, B., Criqui, P., Isaac, M., Kitous, A., Kypreos, S., Leimbach, M., Lessmann, K., Magné, B., Scrieciu, S., Turton, H., van Vuuren, D.P., 2010. The economics of low stabilization: model comparison of mitigation strategies and costs. Energy J. 31 (Special Issue 1). Edenhofer, O., Seyboth, K., Creutzig, F., Schloemer, S., 2013. On the sustainability of renewable energy sources. Annu. Rev. Environ. Resour. http://dx.doi.org/10.1146/annurevenviron-051012-145344 (in press). European Commission, 2011. COMMUNICATION: Energy Roadmap 2050. http://eur-lex. europa.eu/LexUriServ/LexUriServ.do?uri=COM:2011:0885:FIN:EN:PDF. Farmer, J.D., Trancik, J.E., 2007. Dynamics of technological development in the energy sector. London Accord Final Publication. In: Onstwedder, J.-P., Mainelli, M. (Eds.), Santa Fe Institute Working Paper #07-12-046. Fischedick, M., Schaeffer, R., Adedoyin, A., Akai, M., Bruckner, T., Clarke, L., Krey, V., Savolainen, I., Teske, S., Ürge-Vorsatz, D., Wright, R., 2011. Mitigation potential and costs. In: Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., Stechow, C.v. (Eds.), IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Fischer, C., Newell, R.G., 2008. Environmental and technology policies for climate mitigation. J. Environ. Econ. Manag. 55 (2), 142–162. Flinkerbusch, K., Scheffer, F., 2012. Eine Bewertung verschiedener Kapazitätsmechanismen für den deutschen Strommarkt. Z. Energiewirtschaft 37, 13–25. Fripp, M., Wiser, R.H., 2008. Effects of temporal wind patterns in the value of windgenerated electricity in California and the northwest. IEEE Trans. Power Syst. 23 (2), 477-485. GE Energy, 2010. Western wind and solar integration study. NREL Subcontract Report SR550-47434. GEA, 2012. Summary for policymakers. In: Johansson, T.B., Nakicenovic, N., Patwardhan, A., Gomez-Echeverri, L. (Eds.), Global Energy Assessment (GEA). Cambridge University Press, Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City. Gillingham, K., Sweeney, J., 2010. Market failure and the structure of externalities. In: Moselle, B., Schmalensee, R., Padilla, J. (Eds.), Harnessing Renewable Energy in Electric Power Systems: Theory, Practice, Policy. RFF Press. Greene, R., Yatchew, A., 2012. Support schemes for renewable energy: an economic analysis. Econ. Energy Environ. Policy 1 (2).
S22
O. Edenhofer et al. / Energy Economics 40 (2013) S12–S23 Mills, A., Wiser, R., 2012. Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California. Ernest Orlando Lawrence Berkeley National Laboratory (http://www.csp-alliance.org/wp-content/uploads/2011/ 11/Changes-in-Economic-Value-of-Variable-Gen-at-High-Penetration-Levels.pdf). Moomaw, W., Yamba, F., Kamimoto, M., Maurice, L., Nyboer, J., Urama, K., Weir, T., 2011. Introduction. In: Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., Stechow, C.v. (Eds.), Special Report on Renewable Energy Sources and Climate Change Mitigation. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Müsgens, F., Peek, M., 2011. Sind Kapazitätsmärkte in Deutschland erforderlich? - Eine kritische Analyse vor dem Hintergrund der Ökonomischen Theorie. Z. N. Energierecht 6/2011, 576–583. Neij, L., 2008. Cost development of future technologies for power generation—a study based on experience curves and complementary bottom-up assessments. Energy Policy 36 (6), 2200–2211. Nemet, G.F., 2009. Interim monitoring of cost dynamics for publicly supported energy technologies. Energy Policy 37 (3), 825–835. Nicolosi, M., 2012a. The Economics of Renewable Electricity Market Integration. An Empirical and Model-Based Analysis of Regulatory Frameworks and Their Impacts on the Power Market. Universität zu Köln (PhD). Nicolosi, M., 2012b. Notwendigkeit und Ausgestaltungsmöglichkeiten eines Kapazitätsmechanismus für Deutschland. Kurzgutachten erstellt für das Umweltbundesamt.Ecofys GmbH (http://www.ecofys.com/files/files/ecofys_2012_ kapazitaetsmechanismen.pdf). Nordhaus, W.D., 2009a. Designing a friendly space for technological change to slow global warming. Snowmass Conference on Technologies to Combat Global Warming, Snowmass (CO), August 3–4. Nordhaus, W.D., 2009b. The perils of the learning model for modeling endogenous technological change. National Bureau of Economic Research Working Paper Series No. 14638 (http://www.nber.org/papers/w14638.pdf). Pahle, M., Knopf, B., Tietjen, O., Schmid, E., 2012. Kosten des Ausbaus der Erneuerbaren Energien: Eine Metaanalyse von Szenarien. (http://www.umweltdaten.de/ publikationen/fpdf-l/4351.pdf). Palmer, K., Burtraw, D., 2005. Cost-effectiveness of renewable electricity policies. Energy Econ. 27 (6), 873–894. Pérez-Arriaga, I.J., 2001. Long-term reliability of generation in competitive wholesale markets: a critical review of issues and alternative options. IIT Working PaperIIT00-098IT (June2001). Pérez-Arriaga, I.J., Meseguer, C., 1997. Wholesale marginal prices in competitive generation markets. IEEE Trans. Power Syst. 12, 710–717. Piscitello, L., Garrone, P., Wang, Y., 2012. Cross-country spillovers in the renewable energy sector. Paper to be presented at the DRUID 2012 on June 19 to June 21 at CBS, Copenhagen, Denmark (http://druid8.sit.aau.dk/acc_papers/8sqn3os3fph4j08s4ic461g60k36. pdf). REN21, 2012. Renewables 2012 Global Status Report (Paris: REN21 Secretariat). http:// www.map.ren21.net/GSR/GSR2012_low.pdf. Rodilla, P., Batlle, C., 2012. Security of electricity supply at the generation level: problem analysis. Energy Policy 40, 177–185. Rodrik, D., 2007. One Economics, Many Recipes: Globalization, Institutions, and Economic Growth. Princeton University Press. Sathaye, J., Lucon, O., Rahman, A., Christensen, J., Denton, F., Fujino, J., Heath, G., Kadner, S., Mirza, M., Rudnick, H., Schlaepfer, A., Shmakin, A., 2011. Renewable energy in the context of sustainable development. In: Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., Stechow, C.v. (Eds.), IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Schmid, E., Pahle, M., Knopf, B., 2013. A Meta-Analysis of Renewable Electricity Generation in German Mitigaiton Scenarios. Energy Policy 61, 1151–1163. Sensfuß, F., Ragwitz, M., Genoese, M., 2008. The merit-order effect: a detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany. Energy Policy 36 (8), 3086–3094. Sims, R., Mercado, P., Krewitt, W., Bhuyan, G., Flynn, D., Holttinen, H., Jannuzzi, G., Khennas, S., Liu, Y., O 'Malley, M., Nilsson, L.J., Ogden, J., Ogimoto, K., Outhred, H., Ulleberg, Ø., Hulle, F.v., 2011. Integration of renewable energy into present and future energy systems. In: Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., Stechow, C.v. (Eds.), IPCC Special Report on Renewable Energy Sources and Climate. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Smith, C., Milligan, M., DeMeo, E., Parsons, B., 2007. Utility wind integration and operating impact state of the art. IEEE Trans. Power Syst. 22 (3), 900–908. Stiglitz, J.E., 1990. Whither Socialism? MIT Press. Stoft, S., 2002. Power System Economics: Designing Markets for Electricity. IEEE Press.e. Stoughton, M., Chen, R., Lee, S., 1980. Direct construction of the optimal generation mix. IEEE Trans. Power Appar. Syst. 99 (2), 753–759. Sullivan, P., Krey, V., Riahi, K., 2013. Impacts of considering electric sector variability and reliability in the MESSAGE model. Energy Strategy Rev. 1 (3), 157–163. Tavoni, M., Cian, E., Luderer, G., Steckel, J., Waisman, H., 2012. The value of technology and of its evolution towards a low carbon economy. Clim. Chang. 114 (1), 39–57. Ueckerdt, F., Hirth, L., Luderer, G., Edenhofer, O., 2013. System LCOE: what are the costs of variable renewables? USAEE Working Paper 2200572 (http://ssrn.com/abstract= 2200572). Ulph, A., Ulph, D., 2009. Optimal climate change policies when governments cannot commit. Discussion Paper 0909. University of St. Andrews.
Gross, R., Heptonstall, P., Anderson, D., Green, T., Leach, M., Skea, J., 2006. The Costs and Impacts of Intermittency: An Assessment of the Evidence on the Costs and Impacts of Intermittent Generation on the British Electricity Network. www.uwig.org/mwginternal/de5fs23hu73ds/progress?id=GxdIkw+r0n. Hausmann, R., Rodrik, D., 2003. Economic development as self-discovery. J. Dev. Econ. 72 (2), 603–633. Hirth, L., Ueckerdt, F., Edenhofer, O., 2013. Integration Costs and the Value of Wind Power. Thoughts on a valuation framework for variable renewable electricity sources. Energy Policy (submitted for publication). Hirth, L., 2013. The market value of variable renewables: the effect of solar wind power variability on their relative price. Energy Econ. 38, 218–236 (http://www.sciencedirect. com/science/article/pii/S0140988313000285). Hogan, W.W., 2005. On an “ENERGY ONLY” electricity market design for resource adequacy. Working Paper. Center for Business and Government John F. Kennedy School of Government Harvard University, Cambridge, Massachusetts 02138. Holttinen, H., Meibom, P., Orths, A., Lange, B., O 'Malley, M., Tande, J.O., Estanqueiro, A., Gomez, E., Söder, L., Strbac, G., Smith, J.C., van Hulle, F., 2011. Impacts of large amounts of wind power on design and operation of power systems, results of IEA collaboration. Wind Energy 14 (2), 179–192. IPCC, 2011. Summary for policymakers. In: Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., Stechow, C.v. (Eds.), IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Irwin, D.A., Klenow, P.J., 1994. Learning-by-doing spillovers in the semiconductor industry. J. Polit. Econ. 102 (6), 1200–1227. Jaffe, A., Newell, R.G., Stavins, R.N., 2005. A tale of two market failures: technology and environmental policy. Ecol. Econ. 54 (2–3), 164–174. Joskow, P.L., 2006. Competitive electricity markets and investment in new generating capacity. Working Papers 0609. Massachusetts Institute of Technology, Center for Energy and Environmental Policy Research. Joskow, P.L., 2011. Comparing the costs of intermittent and dispatchable electricity generating technologies. Am. Econ. Rev. 101 (3), 238–241. Junginger, M., van Sark, W., Faaij, A. (Eds.), 2010. Technological Learning in the Energy Sector. Lessons for Policy, Industry and Science. Edward Elgar, Cheltenham. Kalkuhl, M., Edenhofer, O., Lessmann, K., 2012. Learning or lock-in: optimal technology policies to support mitigation. Resour. Energy Econ. 34 (1), 1–23. Kalkuhl, M., Lessmann, K., Edenhofer, O., 2013. Renewable energy subsidies: secondbest policy or fatal aberration for mitigation? Resour. Energy Econ. 35 (3), 217–234. Knopf, B., Edenhofer, O., Barker, T., Bauer, N., Baumstark, L., Chateau, B., Criqui, P., Held, A., Isaac, M., Jakob, M., Jochem, E., Kitous, A., Kypreos, S., Leimbach, M., Magné, B., Mima, S., Schade, W., Scrieciu, S., Turton, H., van Vuuren, D., 2009. The economics of low stabilisation: implications for technological change and policy. In: Hulme, M., Neufeldt, H. (Eds.), Making Climate Change Work for Us — ADAM Synthesis Book. Cambridge University Press. Knopf, B., Luderer, G., Edenhofer, O., 2011. Exploring the feasibility of low stabilization targets. Wiley Interdiscip. Rev. Clim. Chang. 2 (4), 617–626. Knopf, B., Chen, H.-Y., De Cian, E., Förster, H., Kanudia, A., Karkatsouli, I., Keppo, I., Koljonen, T., Schumacher, K., van Vuuren, D.P., 2013. Beyond 2020 — strategies for transforming the European energy system. Clim. Chang. Econ. 4 (4) (EMF28 special issue, in press). Krey, V., Clarke, L., 2011. Role of renewable energy in climate mitigation: a synthesis of recent scenarios. Clim. Policy 11 (4), 1131–1158. Lamont, A., 2008. Assessing the long-term system value of intermittent electric generation technologies. Energy Econ. 30 (3), 1208–1231. Leprich, U., Hauser, E., Grashof, K., 2012. Kompassstudie Marktdesign Leitideen für ein Design eines Stromsystems mit hohem Anteil fluktuierender Erneuerbarer Energien. www.bee-ev.de/_downloads/publikationen/studien/2012/1212_BEEGPE-IZES-Kompassstudie-Marktdesign.pdf. Luderer, G., Bosetti, V., Jakob, M., Leimbach, M., Steckel, J.C., Waisman, H., Edenhofer, O., 2012. The economics of decarbonizing the energy system — results and insights from the RECIPE model intercomparison. Clim. Chang. 114 (1), 9–37. Luderer, G., Krey, V., Calvin, K., Merrick, J., Mima, S., Pietzcker, R., Van Vliet, J., Wada, K., 2013. The role of renewable energy in climate stabilization: results from the EMF27 scenarios. Clim. Chang. http://dx.doi.org/10.1007/s10584-013-0924-z (in press). Mai, T., Wiser, R., Sandor, D., Brinkman, G., Heath, G., Denholm, P., Hostick, D.J., Darghouth, N., Schlosser, A., Strzepek, K., 2012. Exploration of high-penetration renewable electricity futures. Renewable Electricity Futures Study, vol. 1. National Renewable Energy Laboratory, Golden, CO (NREL/TP-6A20-52409-1, http://www.nrel.gov/docs/ fy12osti/52409-1.pdf). Mai, T., Logan, J., Blair, N., Sullivan, P., Bazilian, M., 2013. RE-ASSUME A Decision Maker 's Guide to Evaluating Energy Scenarios, Modeling, and Assumptions. http://iea-retd. org/wp-content/uploads/2013/07/RE-ASSUME_IEA-RETD_2013.pdf. McCollum, D.L., Krey, V., Riahi, K., 2011. An integrated approach to energy sustainability. Nat. Clim. Chang. 1, 428–429 (December 2011). McCollum, D.L., Krey, V., Riahi, K., Kolp, P., Grubler, A., Makowski, M., Nakicenovic, N., 2013. Climate policies can help resolve energy security and air pollution challenges. Clim. Chang. 119 (2), 479–494. Milligan, M., Kirby, B., 2009. Calculating wind integration costs: separating wind energy value from integration cost impacts. NREL Technical Report TP-55046275. Milligan, M., Ela, E., Hodge, B.M., Kirby, B., Lew, D., Clark, C., DeCesaro, J., Lynn, K., 2011. Integration of variable generation, cost-causation, and integration costs. Electr. J. 24 (9), 51–63.
O. Edenhofer et al. / Energy Economics 40 (2013) S12–S23 UNEP, 2011. Towards a Green Economy: Pathways to Sustainable Development and Poverty Eradication — A Synthesis for Policy Makers. www.unep.org/greeneconomy. Verbruggen, A., Moomaw, W., Nyboer, J., 2011. Annex I: glossary, acronyms, chemical symbols and prefixes. In: Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., Stechow, C.v. (Eds.), IPCC Special Report on Renewable Energy Sources and Climate
S23
Change Mitigation. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Yeh, S., Rubin, E.S., 2012. A review of uncertainties in technology experience curves. Energy Econ. 34 (3), 762–771. You, C.F., Xu, X.C., 2010. Coal combustion and its pollution control in China. Energy 35 (11), 4467–4472.
Continue Reading

Please join StudyMode to read the full document

You May Also Find These Documents Helpful

  • Colorado and It's Energy Sources Essay
  • Renewable Energy Essay
  • Uk Targets in Terms of Renewable Energy Essay
  • Industrial Raw Materials Resources Inventory Paperwork on Renewable Energy Sources in Nigeria
  • Renewable and Nonrenewable Resources Essay
  • Natu Paperral Energy and Resource
  • 10 Points on Energy Essay
  • Hydropower: Hydroelectricity and Energy Management Dt018 Essay

Become a StudyMode Member

Sign Up - It's Free