Preview

Relative Reactivity of Alkyl Halides

Better Essays
Open Document
Open Document
2258 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Relative Reactivity of Alkyl Halides
Relative Reactivity of Alkyl Halides

Introduction
Nucleophilic substitution of alkyl halides can proceed by two different mechanisms – the SN2 and the SN1. The purpose of the experiment was to identify the effects that the alkyl group and the halide-leaving group have on the rates of SN1 reactions, and the effect that the solvent has on the rates of SN1 and SN2 reactions. The SN1 mechanism is a two-step nucleophilic substitution, or unimolecular displacement. In the first step of the mechanism, the carbon-halogen bond breaks and the halide ion leaving group leaves in a slow, rate-determining step to form a carbocation intermediate. The carbocation intermediate is then immediately detained by the weak nucleophile in a fast, second step to give the product. A solution of ethanol with some silver nitrate may be added provided the weak nucleophile – the alcohol. If an SN1 reaction occurs, the alkyl halide will dissociate to form a carbocation, which will then react with the ethanol to form an ether. Since there is not a strong nucleophile present, the cleavage of the carbon-halogen bond is encouraged by the formation and precipitation of silver bromide. The halide ion will combine with a silver ion from the silver nitrate to form a silver halide precipitate, which will advise that a reaction has occurred. + AgBr + NO3-
Figure 1: The SN1 mechanism of 2-bromo-2-methylpropane and silver nitrate. The nucleophile would have been ethanol while the silver nitrate would have disassociated to form a silver halide precipitate.
The more stable the carbocation, the quicker the reaction. Therefore, SN1 reactions desire tertiary substrates most, followed by secondary, and lastly primary. Because the strength of the nucleophile is unimportant, an ionizing solvent is needed. Water is the best solvent, followed by methanol, ethanol, propanol, and lastly acetone. In experiment two, the tertiary 2-bromo-2-methylpropane was the most favored reactant followed by the secondary

You May Also Find These Documents Helpful

  • Good Essays

    The purpose of this experiment was to observe how the change in solvent polarity affects the rate and to determine the kinetics of a solvolysis reaction. In this experiment, we used 1-chloro-1-phenylethane in acetone in one reaction with 50% ethanol-50% water and in another reaction with 40% ethanol-60% water.…

    • 487 Words
    • 2 Pages
    Good Essays
  • Good Essays

    Sn1 Lab

    • 759 Words
    • 4 Pages

    An SN1 reaction is a nucleophilic substitution reaction where the rate determining step of the reaction is unimolecular, thus, the rate equation is often shown as having first-order dependence on electrophile and zero-order dependence on nucleophile. This relationship holds for situations where the amount of nucleophile is much greater than that of the carbocation intermediate. The reaction (which involves a carbocation intermediate) is commonly seen in reactions of secondary or tertiary alkyl halides under strongly basic conditions or, under strongly acidic conditions (in this case strongly acidic conditions), with secondary or tertiary alcohols. In this reaction, the alcohol will be protonated by the hydrochloric acid. H2O will then “leave” the molecule in the rate-determining step, forming a relatively stable tertiary carbocation (which is highly substituted). The chloride ion, acting as a Lewis base will donate a pair of electrons to the carbocation (acting as a Lewis acid) forming the…

    • 759 Words
    • 4 Pages
    Good Essays
  • Better Essays

    In this experiment, we alkylate sodium saccharin to N-ethylsaccharin with iodoethane in an aprotic solvent N,N dimethylformamide. Nucleophiles in this experiment will react better in an aprotic solvent. Aprotic solvents have dipoles due to its polar bonds but they do not have H atoms that can be donated into a H-bond. The anions which are the O- and N- of sodium saccharin are not solvated therefore are “naked” and the reaction is not inhibited and preceded in an accelerated rate. The reaction was an SN2 reaction. Since the Oxygen and Nitrogen are more electronegative than the carbon on which they’re attached electrons are pulled towards O- and N- attracting the ethane from Iodoethane. Iodine being more electronegative breaks off from ethane and joins the Na+. Since, the Oxygen of sodium saccharin is more electronegative than the nitrogen therefore this gives oxygen a higher partial negative charge therefore an attack on Oxygen will give a product that is formed faster; this can be called a kinetic product. The transition state energy is lower than a product formation by thermodynamic control. At thermal equilibrium at 80°C a more stable product is form from a higher transitional state energy. The nucleophiles in the molecule sodium saccharin are O- and N- and the major product formed depending on which oh the nucleophile was attacked most in the reaction. Nucleophilic attack by nitrogen will yield N-ethylsaccharin and nucleophilic attach by oxygen will yield O-ethylsaccharin. “N-saccharin is more stable than O- ethylsaccharin because the Ethyl group is attached to the Nitrogen giving the same spacial configuration for the five membered ring (which is flat or planar).” (Richard y.a.). The carbonyl carbon is sp2 and flat. This has little ring strain and is stable. The first bond between carbon and oxygen in a carbonyl group is created by overlapping an sp2 hybrid orbital from carbon with an sp2 hybrid orbital from oxygen (sigma bond). The second bond…

    • 1080 Words
    • 5 Pages
    Better Essays
  • Better Essays

    Organic Lab 7

    • 1806 Words
    • 8 Pages

    Alkyl halides are compounds in which a halogen atom replaces a hydrogen atom of an alkane. Alkyl halides are classified as primary, secondary or tertiary depending on the number of alkyl substituents directly attached to the carbon attached to the halogen atom. The purpose of this lab was to properly prepare t-butyl chloride from t-butyl-alcohol in a concentrated hydrochloric acid. The reaction occurs through a nucleophilic substitution, which is when a nucleophile replaces the leaving group in the substrate. In this lab, the hydroxyl group of t-butyl alcohol is replaced by a chlorine atom. The reaction proceeds through an SN1 mechanism (Weldegirma 38-41).…

    • 1806 Words
    • 8 Pages
    Better Essays
  • Good Essays

    Unknown A (Module 11A)

    • 686 Words
    • 3 Pages

    The purpose of Module 11A was to test for the presence or absence of a particular set of functional groups through the use of wet chemical tests. In this manner, Unknown A which was a colorless solution, was first tested with 2,4-DNP which after mixing for a few seconds formed a bright yellow precipitate. Although this confirms the presence of either a ketone or aldehyde group, one simple chemical test does not completely specify the presence or absence of other functional groups. Therefore, a second test was made in order to test for the presence of alkyl halides (R-Br or R-I specifically). However, after the addition of alcoholic silver nitrate, AgNO3 (test #2) to a few drops of the unknown, the mixture remained colorless and no precipitate formed. Following this, the third test was performed in…

    • 686 Words
    • 3 Pages
    Good Essays
  • Good Essays

    Introduction: In this lab, we specifically used elimination reaction; however we only used the E1 reaction. In the presence of strong acids, alcohols protonate to form a good leaving group, namely water. Upon loss of a proton to a good leaving group, an introduction of unsaturation (a double bond) can be preformed. According to Wikipedia, an E2 reaction is typically of secondary and tertiary substituted alkyl halides. An E2 reaction results in formation of a Pi bond. The reason we only used an E1 reaction is because the alcohol functional group was attached to a tertiary carbon, which makes it very compatible to have the compound go through an E1 reaction. In addition, we were using sulphuric acid with heat, it is considered as a weak base making the reactivity for an E1 reaction strong. The reaction also would favor a protic solvent in order for it to be an E1 reaction. When the compound goes through the E1 reaction, it forms a carbocation, and in some cases it could be formed on a secondary carbon. This is when you will see rearrangement of hydrogen to put the compound in more stable alkenes. The stability of the carbocation plays an important role in the amount of alkenes formed. In an E2 reaction, we use a compound that is attached to a secondary or primary carbon. The reactivity is better in those conditions and also when heat is used.…

    • 774 Words
    • 4 Pages
    Good Essays
  • Satisfactory Essays

    Introduction: The purpose of this experiment is to understand the kinetics of the hydrolysis of t-butyl chloride.The kinetic order of reaction was studied under the effects of variations in temperature, solvent polarity, and structure. It is particularly observed in tertiarhalides i.e. in SN1mechanism, Nucleophilic Substitution which is in 1storder. It is basically a reaction that involves substitution by a solvent that pretendslikea nucleophile i.e. it donates electrons. The reaction being in firstorder means the rate of the reaction depends on the concentration of only one reactant.…

    • 936 Words
    • 4 Pages
    Satisfactory Essays
  • Powerful Essays

    Competitive Nucleophiles

    • 628 Words
    • 3 Pages

    The purpose of this experiment was to compare the nucleophilicities of chloride and bromide ions toward the n-butyl and t-pentyl alcohols. We were able to analyze this by using refractometry to measure the amounts of alkyl chloride and alkyl bromide in each reaction.…

    • 628 Words
    • 3 Pages
    Powerful Essays
  • Satisfactory Essays

    Ochem Lab

    • 394 Words
    • 2 Pages

    In this experiment, the secondary alcohol is selected over the primary alcohol. In many cases the primary alcohol can be oxidized all the way to a carboxylic acid. In order to achieve selectivity, sodium hypochlorite is used. It is reacted with acetic acid to form HOCl.…

    • 394 Words
    • 2 Pages
    Satisfactory Essays
  • Satisfactory Essays

    Chem Lab

    • 757 Words
    • 4 Pages

    The purpose of this experiment was to prepare an alkyl halide, 2-chloro-2-methylbutane by reacting 2-methyl -2-butanol (t-amyl alcohol) with hydrochloric acid. Alkyl halides are of wide interest because they are widespread and have diverse beneficial and detrimental impacts .The overall reaction is given below:…

    • 757 Words
    • 4 Pages
    Satisfactory Essays
  • Better Essays

    Alcohol and Ir Spectrum

    • 1927 Words
    • 8 Pages

    Background: Alcohols are capable of being converted to metal salts, alkyl halides, esters, aldehydes, ketones, and carboxylic acids. In this experiment the conversion from alcohol to alkyl halides was investigated. Alkyl halides are a group of chemical compounds derived from alkanes containing one or more halogens. They are used as flame retardants, refrigerants, propellants, solvents, and pharmaceuticals. As a group, students convert three alcohols to alkyl halides under acidic conditions and record the 13C NMR spectrum in each case. The reaction that takes place in the conversion is a bimolecular nucleophilic substitution, or SN2 reaction. Alcohols do not undergo the same SN2 reactions commonly observed with alkyl halides. There are four aspects that determine the rate of the SN2 reaction: nucleophile, substrate, solvent and the leaving group. This reaction requires a lone pair from a nucleophile to donate an electron-pair in the formation of a chemical bond; it then attacks the bonds to an electrophilic…

    • 1927 Words
    • 8 Pages
    Better Essays
  • Good Essays

    Halide Ions Lab

    • 880 Words
    • 4 Pages

    The purpose of this experiment is to observe the reactions of halide ions with different reagents by mixing them together.…

    • 880 Words
    • 4 Pages
    Good Essays
  • Good Essays

    The overall goal of this experiment is to understand and be familiar of SN1 reactivity. We also learned how to prepare 2-Bromobutane by learning how to distill and extract this product from its organic layer. Finally, another goal was to specifically understand the relative reactivity of alkyl halides under SN1 conditions by reacting the alkyl halide and silver nitrate in ethanol.…

    • 762 Words
    • 4 Pages
    Good Essays
  • Good Essays

    The terrestrial plant, Asclepias californica, is the primary food source for Monarch butterflies. It can only germinate and produce seeds if provided with the proper environmental influence. The California milkweed's population is spread out in the southern and coastal areas of California where there are flat lands and grassy slopes. It can also grow up to three feet tall and have clumps consisting of multiple stems that are a couple of feet in width. Unlike the Monarch butterflies, other animals avoid this plant mainly because of its toxic resinoids, alkaloids, and cardiac glycosides. On the contrary, Monarch butterflies ingest the alkaloids contained by this plant for protection from predators such as slugs.…

    • 1333 Words
    • 6 Pages
    Good Essays
  • Powerful Essays

    By examining several such reactions one may get a feel for how variations in the halogen (or halide) affect reactivity.…

    • 3243 Words
    • 13 Pages
    Powerful Essays