Preview

Population Genetics (Fruit Fly)

Good Essays
Open Document
Open Document
1452 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Population Genetics (Fruit Fly)
POPULATION GENETICS (FRUITFLY)

NAME: Christopher N. Anah
CLASS: BIOL 2108L
INSTRUCTOR: DR. JAMES BATTEY

OVERVIEW: In this lab the Drosophila melanogaster fly species were used to do genetic test crosses. Students were taught how to manipulate phenotypes, collect data from F1 through the F4 generations, and analyze the results.INTRODUCTION:
The basic principles of genetics are very often shared by a vast array of organisms. For that reason, it is usually only necessary to study the genetic structure of a few organisms, in order to gain a general understanding of how it works in many others. Microevolution results due to the changes in allelelic frequencies that occur over time within a population. This type of evolution is calculated by a model used in population genetics called the Hardy Weinberg equation. The Hardy-Weinberg equation allows researchers to determine whether evolution has taken place by adhering to five specific conditions. The law essentially states that if no evolution is occurring, then an equilibrium of allele frequencies will remain in effect in each succeeding generation of sexually reproducing individuals. In order for equilibrium to remain in effect Microevolution must not occur, that is none of the following conditions must be violated: 1. No mutations must occur so that new alleles do not enter the population. 2. No gene flow can occur (i.e. no migration of individuals into, or out of, the population). 3. Random mating must occur (i.e. individuals must pair by chance) 4. The population must be large so that no genetic drift (random chance) can cause the allele frequencies to change. 5. No selection can occur so that certain alleles are not selected for, or against. If even one of these conditions are debasedthan micro evolution has occured. In this lab students were instructed to cause micro evolution in a population of fruit flies “Drosophila melanogaster”. This organism was chosen for a number of different

You May Also Find These Documents Helpful

  • Satisfactory Essays

    To keep the tests accurate, it is important to separate the adults from the parental generation so you know you are only crossing the F-1 flies.…

    • 356 Words
    • 3 Pages
    Satisfactory Essays
  • Good Essays

    In this experiment, Drosophila melanogaster, Drosophila virilis, as well as a marker strain (mutant strain of D. melanogaster) were used to examine the genetic variation. Electrophoresis followed by the staining of the proteins will cause the enzymes, aldehyde oxidase, alcohol dehydrogenase, and malate dehydrogenase, to become visible, appearing as a set of different banding patterns. The banding patterns will dependent on the molecular form of the enzyme, indicating the genetic variation that can exist between strains (Biology Department, 2014).…

    • 1385 Words
    • 4 Pages
    Good Essays
  • Good Essays

    In addition to wild-type flies, 29 different mutations of the common fruit fly, Drosophila melanogaster, are included in FlyLab. The 29 mutations are actual known mutations in Drosophila. These mutations create phenotypic changes in bristle shape, body color, antennae shape, eye color, eye shape, wing size, wing shape, wing vein structure, and wing angle. For the purposes of the simulation, genetic inheritance in FlyLab follows Mendelian principles of complete dominance. Examples of incomplete dominance are not demonstrated with this simulation. A table of the mutant phenotypes available in FlyLab can be viewed by clicking on the Genetic Abbreviations tab which appears at the top of the FlyLab homepage. When you select a particular phenotype, you are not provided with any information about the dominance or recessiveness of each mutation. FlyLab will select a fly that is homozygous for the particular mutation that you choose, unless a mutation is lethal in the homozygous condition in which case the fly chosen will be heterozygous. Two of your challenges will be to determine the zygosity of each fly in your cross and to determine the effects of each allele by analyzing the offspring from your…

    • 862 Words
    • 4 Pages
    Good Essays
  • Good Essays

    Pt1420 Unit 6 Lab Report

    • 1184 Words
    • 5 Pages

    What are the factors that lead to evolutionary change? Using mathematical equations, Hardy & Weinberg in the early 20th century showed that evolutionary change – measured as changes in allele frequencies in a population from one generation to the next – will not occur unless certain kinds of “evolutionary agents” are affecting the population. The Hardy-Weinberg equation can be used to describe the allele frequencies in populations that are not changing evolutionarily – and also can be used to determine if populations are changing over time.…

    • 1184 Words
    • 5 Pages
    Good Essays
  • Good Essays

    Fruit Fly Genetics

    • 887 Words
    • 4 Pages

    Brushed PearlThe Brushed Pearl technique imparts a dimensional iridescent finish to walls. This faux finish is subtle, incorporating gentle tones for a muted effect. It's simple to apply and will add elegance and sophistication to any room.…

    • 887 Words
    • 4 Pages
    Good Essays
  • Good Essays

    Fruit Fly Lab Report

    • 1286 Words
    • 6 Pages

    The goal of the Drosophila melanogaster lab was to breed homozygous wild-type Drosophila melanogaster with homozygous mutant Drosophila…

    • 1286 Words
    • 6 Pages
    Good Essays
  • Better Essays

    Fruit Fly Lab Report

    • 1270 Words
    • 6 Pages

    This lab was the study of monohybrid as well as dihybrid crosses. A monohybrid cross is the study of a certain trait whereas a dihybrid cross is the study of the mating experiment between two organisms that are identically hybrid for two traits. ( Reference 1 ) This lab was done to determine the genetic mutations after each generation and to observe the ratios. As each generation of fruit flies came to existence, traits would either be different from each fly or certain traits would disappear from existence. The expected ratio for a monohybrid cross was 3:1 and 9:3:3:1 for the dihybrid cross. For the monohybrid cross, eye color was observed to be wildtype, dark red, or white eyed, which was x-linked. (Reference 2) As for the dihybrid cross, both wing shape as well as eye color was observed. The wings were either straight, wildtype, or shriveled, vestigial, depending on…

    • 1270 Words
    • 6 Pages
    Better Essays
  • Good Essays

    Fruit Fly Lab Report

    • 602 Words
    • 3 Pages

    The class was given vials with adult fruit flies of P1 parent generation to look at the traits, one generation was homozygous, wild type eyes and dumpy wings. The other one was homozygous for sepia eyes and normal wings. These were crossed to yield the F1 generation which is crossed to produce the F2 generation.…

    • 602 Words
    • 3 Pages
    Good Essays
  • Powerful Essays

    The species studied was the Drosophila melanogaster, or more commonly known as the fruit fly. This experiment was conducted to see how the relative fitness of two different phenotypes of the Drosophila melanogaster can affect evolution in the population of two different environments. The relative fitness of an organism is the ability of that organism to both survive and reproduce in its environment. A value of 1 is assigned to an individual is who is best suited for its environment, and all other…

    • 3289 Words
    • 14 Pages
    Powerful Essays
  • Good Essays

    In the reciprocal cross, the behavioural phenotypes were isolated from one another while the wing veins were kept constant (in this case both wild type). When the wild type mellow female Drosophila and wild type hyper male Drosophila were crossed, all female offspring obtained a similar phenotype to that of the male parental while all the male offspring had phenotypical combinations similar to that of the female parent. This set of results shows that the mellow behavioral phenotype is a recessive x-linked gene carried by the female because the resulting male offspring showed the same characteristics to that of the female parent (received X – chromosome from female parent). On an additional note, there was a higher frequency of females in comparison to men; 121 and 105 respectively. In addition, the behavioral gene is sex -linked also because of the different resulting phenotypical ratio in comparison to the cross carried out in vial one.…

    • 771 Words
    • 4 Pages
    Good Essays
  • Good Essays

    Apterous Fly Hypothesis

    • 1002 Words
    • 5 Pages

    Apterous flies have no wings, and are a recessive gene, while wild flies have wings and are a dominant gene, (TT,Tt). A punnett square can be used to cross a recessive (apterous fly, tt) and a dominant gene (wild fly, TT, Tt).…

    • 1002 Words
    • 5 Pages
    Good Essays
  • Powerful Essays

    Ap Bio Chapter 23

    • 1649 Words
    • 7 Pages

    3. What is the Hardy-Weinberg Theorem and why does it appear to be an apparent contradiction to evolution? The theorem states that frequencies of alleles and genotypes will stay the same as long as the gametes are contributed to the next population at random. This appears to be a contradiction to evolution because it seems to say populations will never change. However, this condition only exists under certain conditions which do not apply to the majority of populations. The five conditions are: 1. Extremely large population size. 2. No gene flow. 3. No mutations. 4. Random Mating 5. No natural selection.…

    • 1649 Words
    • 7 Pages
    Powerful Essays
  • Better Essays

    Fruit Fly Lab Report

    • 1348 Words
    • 6 Pages

    Looking at all of the fruit flies, there is no possible way for the parent flies to be homozygous. If the parent flies were homozygous, both the F1 and the F2 phenotypes would be the same holding a 1:1ratio, instead of the 9:3:3:1 ratio that was observed. The purpose of this experiment was to determine the F1 genotype of fruit fly traits using the phenotypic ratio of the F2 generation and to express these results of the unknown cross through a Chi-square model. After taking data with the Chi-squared value of 5.64, the degrees of freedom were 3 and the p-value was between .05 and .2, it is confident to fail to reject the null hypothesis, which leads the experimenters to believe that the observed phenotypic ratio does significantly deviate from that expected under the assumption of Mendelian inheritance. In the future, exploring more complex animals other than fruit flies, such as mammals or reptiles, would make this experiment a little more difficult, but more interesting as well. Without Mendelian genetics, it would be much more difficult to predict traits in organisms across the living…

    • 1348 Words
    • 6 Pages
    Better Essays
  • Powerful Essays

    Fruit Fly Lab Report

    • 1490 Words
    • 6 Pages

    These flies were observed in the lab by anaesthetizing them with triethylamine so they won’t fly away. They were then inserted in a vial with a foam stopper so then it was easier to observe them. A dissecting microscope was used to identify the color of their bodies, wing shape, sex characteristics, and any other body characteristics. We used female fruit flies who were virgins six hours after they came out of their cocoons and mated them with male fruit flies. This is how crosses were made while there were a few Genetic…

    • 1490 Words
    • 6 Pages
    Powerful Essays
  • Good Essays

    Population Genetics Lab

    • 1581 Words
    • 7 Pages

    INTRODUCTION: The Hardy-Weinberg scheme is a way of viewing evolution as changes in the frequency of alleles in a population of organisms. If A and a are alleles for a particular gene and each individual has two alleles then p is the frequency of the A allele and q is the frequency of a alleles. The frequency of the possible diploid combinations is expressed in the equation p2+2pq+q2=1. In order for the Hardy-Weinberg equation to work five conditions must be met:…

    • 1581 Words
    • 7 Pages
    Good Essays