Top-Rated Free Essay
Preview

Physics Notes on Newton's Laws of Motion

Good Essays
1343 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Physics Notes on Newton's Laws of Motion
I noticed that I have not described the rule of F=ma in either the last email or this one. Where would you suggest it be described? Somehow the details of adding forces and balanced forces were missed in the last email and also it did not make perfect sense for me to note. As far as I am concerned the khan academy does not lecture it so I am not too sure in what to do about this. I am assuming finding velocity is the sole purpose of applying the law of conservation of momentum. Is this true? I also would like to note that a graph could not be drawn in some situations again due to me lacking the technology to send photos of handwritten notes. Hence there is sadly no examples of a problem for translational equilibrium and for the force-time graph in which impulse can be identified. I also have referred to explosions as divisions. Is this appropriate?

Newton's First Law of Motion:

A body will remain at rest or moving with constant velocity unless acted on by an unbalanced force. Example: • Q: while traveling in train if one throws a ball up it lands on his palm though the train is moving. my doubt is that though the ball is detached from motion how does it manage to land on his palm though he is moving along with the train? • A: he ball lands on your hand because the ball is, in reality, traveling at the same velocity as the train, you, and everything else on, or part of the train. The ball is not at rest, because assume while the train was accelerating, you were holding the ball. Since you were moving with the train, then the ball is moving at the same velocity you are, and therefore, the same speed the train is moving. Translational Equilibrium: The condition for translational equilibrium is for all the forces acting on a body to be balanced

Newtons Second Law of Motion:

Momentum is the product of mass and velocity (p = mv). It is measured in kg m /s and is a vector quantity. Impulse is the change in momentum when an object reacts to clashing with an external force (momentum after – momentum before) The rate of change of momentum of a body is directly proportional to the unbalanced force acting on that body and takes place in the same direction. Example: • Q: There is a car with 500 KG mass and constant velocity 50 mph. As the car hits a wall what force will be applied on the wall? as the velocity is constant the acceleration would be zero and substituting in the second law F = 500 x 0 =0 • A: In the first question, the acceleration is not zero. It is zero before the car hits the wall, but when it hits the wall, the car will go from a speed of 50 mph to 0 mph in a very short space of time, which is a big deceleration (acceleration in the other direction), until it's speed is zero. The wall will experience an acceleration away from the car. Hence there is a substantial force.

Newtons Third Law of Motion:

If body A exerts a force on body B, Body B will exert an equal and opposite force on Body A. Example: • Q: I have a pen and I push it with an arbitrary amount of force. The pen will exert the same amount of force on me. So wouldn't the forces cancel? And wouldn't the pen not move at all? • A: The forces are equal, but that does not mean this is no reaction. F=ma says that the reaction on each object (you and the pen) due to equal forces will be based on yours and the pens masses. If you and the pen are of equal mass, you and the pen will receive equal acceleration, just in the opposite directions. In space (no friction), the pen will start to move in one direction and you will start to move in the opposite direction, the speed of each based on the individuals or objects mass.

The Law of Conservation of Momentum: Basically, this is just a combination of Newton's 3 laws but is useful when solving problems. For a system of isolated bodies, the total momentum is always the same. When solving problems for impulse and momentum; in a hypothetical situation (in order for this law to apply), where everything in space is isolated from the rest of the universe; momentum before and after are equal and therefore impulse is 0. Hence, pronumerals such as velocity is found by interpreting questions where different bodies may collide or where a body may divide. The area under a force (y-axis) – time (x-axis) graph is equal to the impulse.

Work, Energy and Power:

These are quantities which help explain what enables one body to push another. • Work: ° Work = force x distance moved in direction of the force. It is measured in newtonmetres (Nm), which is a joule (J). Work is a scalar quantity. ° In the cases of the force being non-constant, the formula for work would only apply if the average force is used. Hence, by use of a graphical method, the area under force-distance graph is equal to the work done • Energy: ° Kinetic energy (KE) is the energy a body has due to its movement. For a body to gain this it has to have work done on it. The amount of work that is done is equal to the increase in kinetic energy. A gain in this is expressed by the formula: mv^2/2 ° Gravitational potential energy (PE) is the energy a body has due to to its position above the Earth. A gain in this is expressed by the formula: mgh ° loss of KE = gain in PE, gain in KE = loss in PE ° The law of conservation of energy states that energy cannot be created or destroyed and it is only changed from one form to another. ° KE and PE are the two most basic forms of energy. When more complicated systems are learnt, there is a whole variety of different forms of energy in which to do work. Exaples include petrol, gas, electricity, solar and nuclear. ° Energy, collisions and division: * Elastic collisions are collisions in which both momentum and kinetic energy are conserved. * Inelastic collisions are collisions in which not all momentum and kinetic energy are conserved. Therefore, this has many outcomes. * Divisions are always inelastic because without any work and therefore increasing the KE, the segments that seperate after the division would not have any KE and would therefore not be moving. The energy to initiate a division often comes from the chemical energy contained within a body. • Power: ° Power is the work done per unit time. It is measured in J/s, which is a watt (W). Power is also a scalar quantity. • Efficiency: ° Efficiency = useful work out / work put in. It is not measured in any units and is a scalar quantity. ° Due to the law of conservation of energy, efficiency can never be greater than 1. ° The useful work out is found by the unbalanced force on the box. ° The work put in is found by the work done by the pulling force.

Uniform Circular Motion:

When describing motion in a circle we often use quatities reffering to the angular rather than the linear quantities. Centripetal acceleration is where the change in velocity of a body is directed towards the centre of a circle in the frame of its motion being circular. This is expressed by the formula: a = v^2 /2 Centripetal Force is the force acting on the body towards the centre of the circle. This is expressed by F = mv^2 /r

N = kg/m/s^2

F = ma.

Force is mass times acceleration.

Acceleration is change in velocity over time.

Velocity is distance over time.

So acceleration is change in distance over time over time, or distance over time squared.

You May Also Find These Documents Helpful

  • Powerful Essays

    C 1D Collisions PhET Lab

    • 662 Words
    • 4 Pages

    Introduction: When objects move, they have momentum. Momentum, p, is simply the product of an object’s mass (kg) and its velocity (m/s). The unit for momentum, p, is kgm/s. During a collision, an object’s momentum can be transferred to impulse, which is the product of force (N) and time (s) over which the force acts. This allows us to write the momentum-impulse theorem:…

    • 662 Words
    • 4 Pages
    Powerful Essays
  • Satisfactory Essays

    Unit 2 Motion Essay

    • 527 Words
    • 3 Pages

    16. Momentum – A train is harder to stop than a car going at the same speed…. Why? Train has more ________________ Momentum depends on mass and _________________________…

    • 527 Words
    • 3 Pages
    Satisfactory Essays
  • Satisfactory Essays

    Practice Quiz

    • 5122 Words
    • 42 Pages

    the same in both cases. 3. only mechanical energy wong (eyw89) – Quiz 2 Practice – sudarshan – (57415) 13 A 4. only momentum 048 (part 2 of 2) 10.0 points…

    • 5122 Words
    • 42 Pages
    Satisfactory Essays
  • Good Essays

    Inertia is what keeps an object in its rest state or moving at constant velocity. In other words, it is the tendency for objects to resist a change in their motion. The only thing inertia depends on is the mass of the object, so heavier objects have more inertia and it is harder to change its motion. When you accelerate quickly, you get pushed back against the seat. Because of inertia, your body keeps traveling at the same velocity as before the acceleration. Inertia can also be experienced when the car turns sharply and you get pushed to the opposite side because the body wants to continue in a straight line. This tendency (for objects to be kept in its rest state or keep moving at its…

    • 908 Words
    • 4 Pages
    Good Essays
  • Good Essays

    Midterm Cheat Sheet

    • 1017 Words
    • 5 Pages

    Newton’s second law (equation of motion): The acceleration of a body is directly proportional to, and in the same direction as, the net force acting on the body, and inversely proportional to its mass. Thus, F = ma, where F is the net force acting on the object, m is the mass of the object and a is the acceleration of the object.…

    • 1017 Words
    • 5 Pages
    Good Essays
  • Good Essays

    What is momentum? Momentum is defined as mass in motion. You can calculate the momentum of an object by multiplying the mass of an object by its velocity. Newton’s first law applies to momentum. A moving object will stay in motion unless an outside source interferes with it, and this is the same with momentum. The momentum of an object will not change unless it is interfered by an outside object or force. An example of an object with a lot of momentum would be a bullet. This is because it is a small object with a lot of momentum, therefore, it is hard to stop…

    • 707 Words
    • 3 Pages
    Good Essays
  • Good Essays

    Work

    • 1918 Words
    • 8 Pages

    The impulse of a resultant force from time t1 to time t2 is When the force is plotted versus time, the impulse is the area under the curve between t1 and t2.…

    • 1918 Words
    • 8 Pages
    Good Essays
  • Powerful Essays

    Isaac Newton’s Second Law of Motion (F=ma) explains the relationship between force and acceleration in motion. The application of force on an object causes an…

    • 6862 Words
    • 28 Pages
    Powerful Essays
  • Good Essays

    Untitled document

    • 279 Words
    • 1 Page

    they are giving an example of Newtons First law an object at rest remains at rest. Second…

    • 279 Words
    • 1 Page
    Good Essays
  • Powerful Essays

    Car Collisions

    • 1762 Words
    • 8 Pages

    If we a car with a mass of 1500kgs was driving at a velocity of 20ms-1, its momentum would be 30,000kgms-1. If we assume that this vehicle crashed into a solid concrete wall, with the time taken being 0.05s, we can calculate the force that the car exerts on the wall and the force the wall exerts on the car. All we need to do is rearrange the equation Impulse= Ft to F=Impulse/t. Because the impulse is the change in momentum (final-initial), the impulse would be 30,000kgms-1. 30,000/0.05 =…

    • 1762 Words
    • 8 Pages
    Powerful Essays
  • Good Essays

    Egg Crash Lab Report

    • 806 Words
    • 4 Pages

    Similar to velocity, acceleration, and force, momentum is also described by its direction along with its quantity. The momentum of an object will always be in the same direction of its velocity. Objects with a lot of momentum are hard to stop. Two football players of equal mass are traveling towards each other, one is moving at 6 meters per second, and the other is moving at 9 meters per second. The football player moving with the faster velocity (9…

    • 806 Words
    • 4 Pages
    Good Essays
  • Good Essays

    Newton’s First Law of Motion explains that objects in a state of uniform motion tends to remain in rest unless an external force is applied to it. Galileo’s concept of inertia is termed “Law of Inertia”. Law of Inertia, an object in motion will continue in the same motion unless acted by an outside force. Aircraft in flight is an example of First Law of Motion, four forces on an aircraft; lift, weight, thrust, and a drag. Consider the motion of an aircraft at constant altitude, we can neglect the lift and weight, a cruising aircraft at constant speed and the thrust balances the drag of the aircraft. This is the first part sited in Newton’s First Law; there is no net force on the airplane and it travels at a constant velocity in a straight line.…

    • 543 Words
    • 3 Pages
    Good Essays
  • Good Essays

    Astronomy Study Guide

    • 1752 Words
    • 8 Pages

    F = ma where F is force, m is mass, and a is acceleration. This means that if you apply the same amount of force to two different objects with one mass larger than the other, the acceleration will be different.…

    • 1752 Words
    • 8 Pages
    Good Essays
  • Good Essays

    Isaac Newton A Hero

    • 708 Words
    • 3 Pages

    “(1) Every body continues in its state of rest, or uniform motion in a straight line, unless it is compelled to change that state by forces impressed on it (The property of “Inertia”). (2) The change in motion is proportional to the motive force impressed and is made in the direction of the straight line in which that force is impressed (F = ma). (3) To every action there is always an opposite and equal reaction.”…

    • 708 Words
    • 3 Pages
    Good Essays