Top-Rated Free Essay
Preview

Photosynthesis and The Calvin Cycle

Good Essays
17734 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Photosynthesis and The Calvin Cycle
Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH. Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH. Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH. Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH. Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH. Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH. Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH. Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH. Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH. Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH. Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH. Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH. Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH. Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH. Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH. Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH. Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH. Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH. Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH. Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH. Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH. Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH. Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH. Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.vvPhotosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.vvvPhotosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.Photosynthesis depends on an interaction between two sets of reactions: the light reactions and the Calvin cycle. Chlorophyll and the other molecules responsible for the light reactions are built into the thylakoid membranes. The enzymes that catalyze the Calvin cycle are located in the stroma. Beginning with the absorption of light by chlorophyll, the light reactions convert light energy into chemical energy in the form of ATP and NADPH. The ATP provides the energy, and the NADPH supplies the electrons for the Calvin cycle, which converts carbon dioxide to sugar. The ADP and NADP+ that result from the Calvin cycle shuttle back to the light reactions, which regenerate ATP and NADPH.

You May Also Find These Documents Helpful

  • Good Essays

    Electrochemistry Quiz

    • 1490 Words
    • 6 Pages

    a. The light reactions provide ATP and NADPH to the Calvin cycle, and the cycle returns ADP, Pi, and NADP+ to the light reactions.…

    • 1490 Words
    • 6 Pages
    Good Essays
  • Powerful Essays

    When the electron has reached photosystem I it is attached to a special pair of chlorophyll in the reaction center called p700. Light energy is then absorbed by pigments which are passed on to the reaction center , the electron which is in p700 is then boosted to a high energy level which is then transferred to a acceptor molecule. As the special pairs of electron is missing it is then replaced by a new one from photosystem II.…

    • 1319 Words
    • 6 Pages
    Powerful Essays
  • Good Essays

    The process of photosynthesis occurs when six carbon dioxide molecules (CO2), six water molecules (H2O), and light energy are added together and result in glucose (C6H12O6) and six oxygen (O2) molecules. There are two stages to this process; light reactions and dark reactions. Light reactions start with chloroplast which absorbs the light. Inside the chloroplast are thylakoids that contain pigments which absorb certain wavelengths of light. Each cluster of pigments is called a photosystem. Photosystem I and II obtain some of the light’s energy. Light first enters chlorophyll A in photosystem II and the electrons inside become excited enough to leave it. Some of the electrons, which just left, enter a chain of reactions called the electron transport chain and it produces ATP. The electrons that couldn’t fit into the ETC move onto photosystem I. Those electrons then get excited by light energy and enter the ETC where they add a hydrogen atom to NADP to form NADPH.…

    • 411 Words
    • 3 Pages
    Good Essays
  • Good Essays

    Where does the ATP for the Calvin Cycle come from for the production of carbohydrate molecules? Light Reactions of photosynthesis…

    • 669 Words
    • 3 Pages
    Good Essays
  • Satisfactory Essays

    AP Bio photosynthesis

    • 1029 Words
    • 5 Pages

    ● Chlorophyll takes in light energy. Other photosynthetic pigments like carotenoids and phycobilins indirectly participate in the photosynthesis by trapping photons from different wavelength of light and passing it to chlorophylls for photosynthesis as they are not capable of this function.…

    • 1029 Words
    • 5 Pages
    Satisfactory Essays
  • Powerful Essays

    Photosystem I is referred to by the wavelength at which its reaction center best absorbs light, or…

    • 2225 Words
    • 9 Pages
    Powerful Essays
  • Good Essays

    1979 A.P.

    • 709 Words
    • 3 Pages

    Photosynthesis is the process by which green plants, algae and some bacteria absorb light energy and use it to synthesize organic compounds. In green plants, photosynthesis occurs in chloroplasts, that contain the photosynthetic pigments. Photosynthesis occurs by slightly different processes in C3 and C4 plants. Factors which can affect this are the stomata. Plants can regulate the movements of water vapor, O2 and CO2 through the leaf surface. This is accomplished by opening and closing the stomata, usually found on the bottom…

    • 709 Words
    • 3 Pages
    Good Essays
  • Better Essays

    Photosynthesis Lab Report

    • 874 Words
    • 4 Pages

    These experiments were designed to visualize the process of photosynthesis. We looked at how light was manipulated to affects the rate at which these reactions occur. With our results, we have a better understanding of…

    • 874 Words
    • 4 Pages
    Better Essays
  • Satisfactory Essays

    * Net ATP of 2 (because you used 2 in the beginning), 2 pyruvic acids, 2 NADH…

    • 644 Words
    • 3 Pages
    Satisfactory Essays
  • Good Essays

    When light strikes chlorophyll, it absorbs one photon and loses one electron. The electron is now in a higher state of potential energy and is unstable. This electron is passed down a chain of modified chlorophyll molecules creating an electron transport chain. The electron is passed to NADP, reducing it to NADPH. The energy released by reducing the potential energy of the electron is used by enzymes to pump hydrogen atoms inside the membrane. This creates a proton gradient. The proton gradient is caused by a higher concentration of protons inside the membrane than outside. This proton gradient is then used to add a phosphate onto ADP, turning it into ATP. The net effect of this process is to store the energy of the proton gradient in…

    • 828 Words
    • 4 Pages
    Good Essays
  • Good Essays

    Plants are able to produce ATP during the light dependent reaction of photosynthesis in the thylakoid of the chloroplast. Red and blue wavelengths of light are absorbed by chlorophyll in chloroplasts on Photosystem II. The chloroplasts are protected and contained by a membrane, but they are close to the surface of the cell to catch the maximum amount of light. Their broad length also allows larger wavelengths of light to be absorbed. The energy absorbed is transferred to electrons and excites them to a higher energy level. This leads to the photolysis of water which results in the formation of hydrogen ions, electrons and oxygen gas. The electrons formed during photolysis then replace those excited by the light. The excited electrons are then passed along the electron transport chain in a series of redox reactions from one carrier to the next. The energy released by this passage is used to activate ATPase to combine ADP and Pi to form ATP. This process of converting ADP to ATP using light…

    • 1087 Words
    • 3 Pages
    Good Essays
  • Good Essays

    Energy Transfers

    • 883 Words
    • 4 Pages

    The nucleotide ATP (adenosine triphosphate) maintains both catabolic and anabolic reactions. Catabolic reactions e.g. respiration are where larger molecules are broken down into smaller ones with energy being released, and anabolic reactions e.g. photosynthesis are where smaller molecules are built up into larger ones which require energy. Catabolism provides the energy for organisms to synthesise larger molecules in its anabolic reactions. To release energy, ATP is hydrolysed into ADP and Pi (an inorganic phosphate) which releases energy that can be used for energy requiring reactions such as photosynthesis. However to maintain the organisms anabolic reactions, ATP must be continually synthesised by condensation reactions where ADP is added onto a phosphate molecule. This process is helped by energy transferred from catabolic reactions such as respiration and occurs in three ways: photophosphorylation, oxidative phosphorylation and substrate-level phosphorylation. Photophosphorylation takes place in chlorophyll- containing plant cells during photosynthesis, oxidative phosphorylation occurs in the mitochondria and animal cells during electron transport, and substrate- level phosphorylation occurs in plant and animal cells when phosphate groups are transferred from donor molecules to ADP to make ATP e.g. when pyruvate is formed at the end of glycolysis.…

    • 883 Words
    • 4 Pages
    Good Essays
  • Better Essays

    Melvin Calvin

    • 943 Words
    • 4 Pages

    Although Calvin made many accomplishments, as shown by the list above, he is most remembered for identifying most of the chemical reactions in the process of carbon dioxide being converted to carbohydrates. In order to understand the accomplishment of Melvin Calvin, photosynthesis must be understood at a basic level. Photosynthesis can be summarized into a few steps. First, sunlight or another form of light must reach the chlorophyll in the chloroplasts of a plant…

    • 943 Words
    • 4 Pages
    Better Essays
  • Good Essays

    In plant cells, during photosynthesis, enzymes are used in chloroplast to catalyse the processes. In light-dependent stage, ATP synthase enzyme is used to generate ATP molecules, they can be used in light-independent stage. Another enzyme, RuBisCo , catalyse the formation of glycerate-3-phosphate in Calvin cycle. The ATP generated in light-dependent stage and NADPH then react with glycerate-3-phosphate to produce triose phosphate, useful 6C sugar therefore is formed, for the growth of plants.…

    • 625 Words
    • 3 Pages
    Good Essays
  • Satisfactory Essays

    Photosynthesis Lab

    • 279 Words
    • 2 Pages

    1. Introduction: Light dependent reactions are the first phase of photosynthesis. It requires light to happen and happens in the thylakoid membrane in a chloroplast. The light energy is absorbed from the sun and converted into chemical energy. Which is then stored temporarily in ATP and NADPH.…

    • 279 Words
    • 2 Pages
    Satisfactory Essays

Related Topics