# Newtons Second Law of Motion

Topics: Mass, Force, Newton's laws of motion Pages: 2 (447 words) Published: April 3, 2009
Experiment 3.1 Newton’s Second Law of Motion Aim: To investigate the relationship between net force, mass and acceleration Hypothesis: Since Newton’s second law of motion states that the acceleration of an object is directly proportional to the total force acting upon that object, we can assume that the more mass being pulled down on the cart the greater the acceleration of it will be and therefore the greater its net force will be. Apparatus: Wheeled carts Pulleys Balance Ticker Tape Weights String Factors affecting Acceleration of Cart: Mass of Weights pulling down the cart Friction of cart wheels along the ground Mass of the cart Length of the String to the pulley Friction of sting against the pulley Independent Variables: Mass of Pulley Mass of Trolley Dependent Variables: Acceleration Net force Total Mass Results {draw:frame} {draw:frame} Discussion The Cart went faster when it had 105 grams of weights pulling down on it compared to when it had 5 grams of weight pulling on it, thus proving my hypothesis. Just by putting an extra 100 grams of weight pulling down on the cart acceleration was around 3.8 times faster than previously and so force also increased by a scale factor of that amount. We can assume that another extra 100 grams of weight pulling down on the cart would increase the acceleration by that output as well. When the extra weight was put on the cart it slowed down the acceleration. This is because the force acted upon the cart was much more less than the mass of the cart resulting in a very low acceleration. So in conclusion there is a direct relationship between force and acceleration, if acceleration increases then force will also increase. Whereas there is an indirect relationship between mass and force, sometimes a lighter object may have greater force than a heavier one (as shown in this experiment when force was greater when...