Preview

Neemo

Satisfactory Essays
Open Document
Open Document
1339 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Neemo
References

^ a b John C. Gallop (1990). SQUIDS, the Josephson Effects and Superconducting Electronics. CRC Press. pp. 3, 20. ISBN 0-7503-0051-5.
^ a b J. G. Bednorz and K. A. Müller (1986). "Possible high Tc superconductivity in the Ba−La−Cu−O system". Z. Physik, B 64 (1): 189–193. Bibcode:1986ZPhyB..64..189B. doi:10.1007/BF01303701.
^ Adam Mann (2011 Jul 20). "High-temperature superconductivity at 25: Still in suspense". Nature 475 (7356): 280–2. doi:10.1038/475280a. PMID 21776057.
^ Pines, D. (2002), "The Spin Fluctuation Model for High Temperature Superconductivity: Progress and Prospects", The Gap Symmetry and Fluctuations in High-Tc Superconductors, New York: Kluwer Academic, pp. 111–142, doi:10.1007/0-306-47081-0_7, ISBN 0-306-45934-5
^ P. Monthoux, A. V. Balatsky, and D. Pines (1991). Toward a theory of high-temperature superconductivity in the antiferromagnetically correlated cuprate oxides 67. pp. 3448–3451. Bibcode:1991PhRvL..67.3448M. doi:10.1103/PhysRevLett.67.3448. Text "Phys. Rev. Lett. " ignored (help)
^ Jun Nagamatsu, Norimasa Nakagawa, Takahiro Muranaka, Yuji Zenitani and Jun Akimitsu (2001). "Superconductivity at 39 K in magnesium diboride". Nature 410 (6824): 63. Bibcode:2001Natur.410...63N. doi:10.1038/35065039. PMID 11242039.
^ Paul Preuss (14 August 2002). "A most unusual superconductor and how it works: first-principles calculation explains the strange behavior of magnesium diboride". Research News (Lawrence Berkeley National Laboratory). Retrieved 2009-10-28.
^ Hamish Johnston (17 February 2009). "Type-1.5 superconductor shows its stripes". Physics World (Institute of Physics). Retrieved 2009-10-28.
^ R. L. Dolecek (1954). "Adiabatic Magnetization of a Superconducting Sphere". Physical Review 96 (1): 25–28. Bibcode:1954PhRv...96...25D. doi:10.1103/PhysRev.96.25.
^ H. Kleinert (1982). "Disorder Version of the Abelian Higgs Model and the Order of the Superconductive Phase Transition". Lettere al Nuovo Cimento 35 (13): 405–412.



References: ^ a b John C. Gallop (1990). SQUIDS, the Josephson Effects and Superconducting Electronics. CRC Press. pp. 3, 20. ISBN 0-7503-0051-5. ^ a b J. G. Bednorz and K. A. Müller (1986). "Possible high Tc superconductivity in the Ba−La−Cu−O system". Z. Physik, B 64 (1): 189–193. Bibcode:1986ZPhyB..64..189B. doi:10.1007/BF01303701. ^ Adam Mann (2011 Jul 20). "High-temperature superconductivity at 25: Still in suspense". Nature 475 (7356): 280–2. doi:10.1038/475280a. PMID 21776057. ^ Jun Nagamatsu, Norimasa Nakagawa, Takahiro Muranaka, Yuji Zenitani and Jun Akimitsu (2001). "Superconductivity at 39 K in magnesium diboride". Nature 410 (6824): 63. Bibcode:2001Natur.410...63N. doi:10.1038/35065039. PMID 11242039. ^ Paul Preuss (14 August 2002). "A most unusual superconductor and how it works: first-principles calculation explains the strange behavior of magnesium diboride". Research News (Lawrence Berkeley National Laboratory). Retrieved 2009-10-28. ^ Hamish Johnston (17 February 2009). "Type-1.5 superconductor shows its stripes". Physics World (Institute of Physics). Retrieved 2009-10-28. ^ R. L. Dolecek (1954). "Adiabatic Magnetization of a Superconducting Sphere". Physical Review 96 (1): 25–28. Bibcode:1954PhRv...96...25D. doi:10.1103/PhysRev.96.25. ^ H. Kleinert (1982). "Disorder Version of the Abelian Higgs Model and the Order of the Superconductive Phase Transition". Lettere al Nuovo Cimento 35 (13): 405–412. doi:10.1007/BF02754760. ^ J. Hove, S. Mo, A. Sudbo (2002). "Vortex interactions and thermally induced crossover from type-I to type-II superconductivity". Physical Review B 66 (6): 064524. arXiv:cond-mat/0202215. Bibcode:2002PhRvB..66f4524H. doi:10.1103/PhysRevB.66.064524. ^ Lev D. Landau, Evgeny M. Lifschitz (1984). Electrodynamics of Continuous Media. Course of Theoretical Physics 8. Oxford: Butterworth-Heinemann. ISBN 0-7506-2634-8. ^ David J. E. Callaway (1990). "On the remarkable structure of the superconducting intermediate state". Nuclear Physics B 344 (3): 627–645. Bibcode:1990NuPhB.344..627C. doi:10.1016/0550-3213(90)90672-Z. ^ H. K. Onnes (1911). "The resistance of pure mercury at helium temperatures". Commun. Phys. Lab. Univ. Leiden 12: 120. ^ F. London and H. London (1935). "The Electromagnetic Equations of the Supraconductor". Proceedings of the Royal Society of London A 149 (866): 71–88. Bibcode:1935RSPSA.149...71L. doi:10.1098/rspa.1935.0048. JSTOR 96265. ^ Meissner, W.; R. Ochsenfeld (1933). "Ein neuer Effekt bei Eintritt der Supraleitfähigkeit". Naturwissenschaften 21 (44): 787. Bibcode:1933NW.....21..787M. doi:10.1007/BF01504252. ^ J. Bardeen, L. N. Cooper and J. R. Schrieffer (1957). "Microscopic Theory of Superconductivity". Physical Review 106 (1): 162–164. Bibcode:1957PhRv..106..162B. doi:10.1103/PhysRev.106.162. ^ a b J. Bardeen, L. N. Cooper and J. R. Schrieffer (1957). "Theory of Superconductivity". Physical Review 108 (5): 1175–1205. Bibcode:1957PhRv..108.1175B. doi:10.1103/PhysRev.108.1175. ^ V. L. Ginzburg and L.D. Landau (1950). "On the theory of superconductivity". Zhurnal Eksperimental 'noi i Teoreticheskoi Fiziki 20: 1064. ^ E. Maxwell (1950). "Isotope Effect in the Superconductivity of Mercury". Physical Review 78 (4): 477. Bibcode:1950PhRv...78..477M. doi:10.1103/PhysRev.78.477. ^ C. A. Reynolds, B. Serin, W. H. Wright and L. B. Nesbitt (1950). "Superconductivity of Isotopes of Mercury". Physical Review 78 (4): 487. Bibcode:1950PhRv...78..487R. doi:10.1103/PhysRev.78.487. ^ N. N. Bogoliubov (1958). "A new method in the theory of superconductivity". Zhurnal Eksperimental 'noi i Teoreticheskoi Fiziki 34: 58. ^ L. P. Gor 'kov (1959). "Microscopic derivation of the Ginzburg—Landau equations in the theory of superconductivity". Zhurnal Eksperimental 'noi i Teoreticheskoi Fiziki 36: 1364. ^ "Newly discovered fundamental state of matter, a superinsulator, has been created.". Science Daily. April 9, 2008. Retrieved 2008-10-23. ^ a b M. K. Wu et al. (1987). "Superconductivity at 93 K in a New Mixed-Phase Y-Ba-Cu-O Compound System at Ambient Pressure". Physical Review Letters 58 (9): 908–910. Bibcode:1987PhRvL..58..908W. doi:10.1103/PhysRevLett.58.908. PMID 10035069. ^ "Section 4.1 "Air plug in the fill line"". "Superconducting Rock Magnetometer Cryogenic System Manual". 2G Enerprises. Archived from the original on May 6, 2009. Retrieved 9 October 2012. ^ Alexei A. Abrikosov (8 December 2003). "type II Superconductors and the Vortex Lattice". Nobel Lecture. ^ a b A. Schilling et al. (1993). "Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system". Nature 363 (6424): 56. Bibcode:1993Natur.363..56C. doi:10.1038/363056a0. ^ Zhi-An Ren et al. (2008). "Superconductivity and phase diagram in iron-based arsenic-oxides ReFeAsO1-d (Re = rare-earth metal) without fluorine doping". EPL 83: 17002. arXiv:0804.2582. Bibcode:2008EL.....8317002R. doi:10.1209/0295-5075/83/17002. ^ R. Hazen et al. (1987). "Crystallographic description of phases in the Y-Ba-Cu-O superconductor". Physical Review B 35 (13): 7238. Bibcode:1987PhRvB..35.7238H. doi:10.1103/PhysRevB.35.7238. ^ a b Neeraj Khare (2003-05-01). Handbook of High-Temperature Superconductor Electronics. ISBN 0-8247-0823-7. ^ R. Hazen et al. (1988). "Superconductivity in the high-Tc Bi-Ca-Sr-Cu-O system: Phase identification". Physical Review Letters 60 (12): 1174. Bibcode:1988PhRvL..60.1174H. doi:10.1103/PhysRevLett.60.1174. ^ a b J. Tarascon et al. (1988). "Preparation, structure, and properties of the superconducting compound series Bi2Sr2Can−1CunOy with n = 1, 2, and 3". Physical Review B 38 (13): 8885. Bibcode:1988PhRvB..38.8885T. doi:10.1103/PhysRevB.38.8885. ^ Z. Sheng et al. (1988). "Superconductivity at 90 K in the Tl-Ba-Cu-O system". Physical Review Letters 60 (10): 937–940. Bibcode:1988PhRvL..60..937S. doi:10.1103/PhysRevLett.60.937. PMID 10037895. ^ Z.Z. Sheng, A. M. Hermann, Z. Z.; Hermann, A. M. (1988). "Superconductivity in the rare-earth-free Tl-Ba-Cu-O system above liquid-nitrogen temperature". Nature 332 (6159): 55. Bibcode:1988Natur.332...55S. doi:10.1038/332055a0. ^ S. N. Putilin et al. (1993). "Superconductivity at 94 K in HgBa2Cu04+δ". Nature 362 (6417): 226. Bibcode:1993Natur.362..226P. doi:10.1038/362226a0. ^ C. W. Chu et al. (1993). "Superconductivity above 150 K in HgBa2Ca2Cu3O8+δ at high pressures". Nature 365 (6444): 323. Bibcode:1993Natur.365..323C. doi:10.1038/365323a0. ^ D. Shi et al. (1989). "Origin of enhanced growth of the 110 K superconducting phase by Pb doping in the Bi-Sr-Ca-Cu-O system". Applied Physics Letters 55 (7): 699. Bibcode:1989ApPhL..55..699S. doi:10.1063/1.101573.

You May Also Find These Documents Helpful

  • Satisfactory Essays

    LYT2 Task2

    • 4061 Words
    • 12 Pages

    Single flux quantum circuits for 2.5 Gbps data switching. IEEE Transactions On Applied Superconductivity, 7(2), 2476-2479. doi:10.1109/77.621741…

    • 4061 Words
    • 12 Pages
    Satisfactory Essays
  • Powerful Essays

    Semiconductors allow the flow of both ions and electrons through the sample but not completely free; and its conductivity increases with increasing temperature. Superconductors are a class of metallic conductor whose resistance drops to zero suddenly below a certain critical temperature.…

    • 990 Words
    • 4 Pages
    Powerful Essays
  • Powerful Essays

    Egg Drop

    • 1366 Words
    • 6 Pages

    Serway, R. A., & Faughn, J. S. (2002). Holt Physics. Austin, Texas: Holt, Rinehart, and Winston.…

    • 1366 Words
    • 6 Pages
    Powerful Essays
  • Powerful Essays

    Heinemann Physics Content and Contexts Units 3A and 3B ISBN 978 1 4425 1140 8 Page 4 of 69…

    • 5177 Words
    • 21 Pages
    Powerful Essays
  • Good Essays

    Superconductive wire can be made from an alloy of niobium and titanium which can then be used to make superconductive magnets. Other alloys of niobium, such as those with tin and aluminum, are superconductive as well. Pure niobium is itself a superconductor when it is cooled below 9.25 K (-442.75°F). Superconductive niobium cavities are at the heart of a machine built at the Thomas Jefferson National Accelerator Facility. This machine, called an electron accelerator, is used by scientists to study the quark structure of matter. The accelerator's 338 niobium cavities are bathed in liquid helium and accelerateelectrons to nearly the speed of…

    • 1876 Words
    • 8 Pages
    Good Essays
  • Good Essays

    Zirconium: Ore Crusher

    • 4086 Words
    • 17 Pages

    ZrZn2 is one of only two substances to exhibit superconductivity and ferromagnetism simultaneously, with the other being UGe2.…

    • 4086 Words
    • 17 Pages
    Good Essays
  • Good Essays

    Superfluids inside neutron stars, proposed as early as 1959, offered an alternative to the Urca process. Created in laboratories by chilling liquids to ultracold temperatures, superfluids have mind-boggling abilities to climb walls and leak through solid glass containers. And they make great coolants: Superfluid helium keeps the superconducting magnets in the world’s most powerful particle collider chilled to just 1.9 degrees above absolute…

    • 599 Words
    • 3 Pages
    Good Essays
  • Better Essays

    Physics Of Ballet Dance

    • 826 Words
    • 4 Pages

    Zitzewitz, Paul W. Glencoe Physics : Principles and Problems. Columbus, OH: The McGraw-Hill Companies, Inc.,…

    • 826 Words
    • 4 Pages
    Better Essays
  • Best Essays

    Physics

    • 3522 Words
    • 15 Pages

    * Michael Andriessen, Graeme Lofts, Ric Morante, Joseph Barry Mott. (2002). Physics Preliminary Course 1. Queensland. John Wiley & Sons Australia Ltd.…

    • 3522 Words
    • 15 Pages
    Best Essays
  • Best Essays

    Gaastra, E. (2005, October). Is the biggest paradigm shift in the history of science at hand? Progress in Physics, 2005.3, 57(4). Retrieved December 20, 2006, from Thomson Gale database.…

    • 2285 Words
    • 10 Pages
    Best Essays
  • Good Essays

    In the β phase, there is essentially no thermal expansion even as temperature increases (the line charts in Fig. 3 and 4 plateau past 980K). This is because the structure has expanded to its maximum size, and the intertetrahedral bridging angles and tilt angles can no longer be varied to accommodate further…

    • 1041 Words
    • 5 Pages
    Good Essays
  • Good Essays

    Supernova and Tc

    • 3562 Words
    • 15 Pages

    ´ ´ ´ Instituto de Astronomıa, Universidad Nacional Autonoma de Mexico, Mexico D.F. 04510, Mexico 2 Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701-2979, USA 3 Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, New York 11794-3800, USA 4 Joint Institute for Nuclear Astrophysics, National Superconducting Cyclotron Laboratory and, Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA (Received 29 November 2010; published 22 February 2011) We propose that the observed cooling of the neutron star in Cassiopeia A is due to enhanced neutrino emission from the recent onset of the breaking and formation of neutron Cooper pairs in the 3 P2 channel. We find that the critical temperature for this superfluid transition is ’ 0:5 Â 109 K. The observed rapidity of the cooling implies that protons were already in a superconducting state with a larger critical temperature. This is the first direct evidence that superfluidity and superconductivity occur at supranuclear densities within neutron stars. Our prediction that this cooling will continue for several decades at the present rate can be tested by continuous monitoring of this neutron star.…

    • 3562 Words
    • 15 Pages
    Good Essays
  • Better Essays

    * Lim Peng Chew, Lim Ching Chai, Nexus Bestari Physics, Sasbadi Sdn. Bhd. , 2013, Pg 18,19…

    • 1654 Words
    • 48 Pages
    Better Essays
  • Good Essays

    Superconductors

    • 542 Words
    • 3 Pages

    Superconductivity was discovered by a Dutch scientist by the name of Heike Kamerlingh Onnes in 1911. While researching properties of materials at absolute zero, this man found out that certain materials lost its resistance to the flow of electrons. For years to come, his discovery was at the head of theoretical interest. The only problem though, was that people at that time could not even think of a way to produce such a temperature, to allow materials to be superconductors at all times. This all changed in 1986 when Karl Muller and George Bednorz were working at the IBM Research Division in Zurich, Switzerland. They found a material that reached superconductivity at around 35 degrees Kelvin or –238 degrees Celsius. In the next year, a team of Chinese-American physicists declared that they had found a material that reached superconductivity at 92 degrees Kelvin. This was a big improvement. 92 degrees Kelvin is not a very high temperature, in fact, it is the equivalent of –181 degrees Celsius. Locating superconducting material above 77 degree Kelvin is a good thing because it means that the material will be easily produced and used. A theoretical understanding of superconductivity was advanced in 1957 by American physicists John Bardeen, Leon Cooper, and John Schrieffer. Their Theories of Superconductivity became know as the BCS theory (which came from each mans last name) and won them a Nobel prize in 1972. The BCS theory explained superconductivity at temperatures close to absolute zero. However, at higher temperatures and with different superconductor systems, the BCS theory has consequently became insufficient to fully explain…

    • 542 Words
    • 3 Pages
    Good Essays
  • Good Essays

    Superconductivity is a phenomenon observed in several metals and ceramic materials. When these materials are cooled to temperatures ranging from near absolute zero (-459 degrees Fahrenheit, 0 degrees Kelvin, -273 degrees Celsius) to liquid nitrogen temperatures (-321 F, 77 K, -196 C), they have no electrical resistance. The temperature at which electrical resistance is zero is called the critical temperature (Tc) and varies with the individual material. For practical purposes, critical temperatures are achieved by cooling materials with either liquid helium or liquid nitrogen. The following table shows the critical temperatures of various superconductors:…

    • 639 Words
    • 3 Pages
    Good Essays

Related Topics