Mostly Econometrics

Powerful Essays
Mostly Harmless Econometrics: An Empiricist’ Companion s
Joshua D. Angrist Massachusetts Institute of Technology Jörn-Ste¤en Pischke The London School of Economics

March 2008

ii

Contents
Preface Acknowledgments Organization of this Book xi xiii xv

I

Introduction

1
3 9 10 12 16

1 Questions about Questions 2 The Experimental Ideal 2.1 2.2 2.3 The Selection Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Random Assignment Solves the Selection Problem . . . . . . . . . . . . . . . . . . . . . . . . Regression Analysis of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

II

The Core

19
21 22 23 26 30 36 38 38 44 47 51 51

3 Making Regression Make Sense 3.1 Regression Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.1 3.1.2 3.1.3 3.1.4 3.2 Economic Relationships and the Conditional Expectation Function . . . . . . . . . . . Linear Regression and the CEF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Asymptotic OLS Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Saturated Models, Main E¤ects, and Other Regression Talk . . . . . . . . . . . . . . .

Regression and Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.1 3.2.2 3.2.3 The Conditional Independence Assumption . . . . . . . . . . . . . . . . . . . . . . . . The Omitted Variables Bias Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bad Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.3

Heterogeneity and Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.1 Regression Meets Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

iv 3.3.2 3.3.3 3.4

CONTENTS Control for Covariates Using the Propensity Score . . . . . . . . . . . . . . . . . . . .



References: REFERENCES Ananat, Elizabeth, and Guy Michaels (2008): “The E¤ect of Marital Breakup on the Income Distribution of Women with Children,” Journal of Human Resources, forthcoming

You May Also Find These Documents Helpful

  • Better Essays

    Statistics Coursework

    • 816 Words
    • 4 Pages

    * The analysis is clear, informative, detailed and makes references to economic theory and to technical aspects of regression analysis;…

    • 816 Words
    • 4 Pages
    Better Essays
  • Satisfactory Essays

    For UNSW policies, penalties, and information to help you avoid plagiarism see: http://www.lc.unsw.edu.au/plagiarism/index.html as well as the guidelines in the online ELISE and ELISE Plus tutorials for all new UNSW students: http://info.library.unsw.edu.au/skills/tutorials/InfoSkills/index.htm. To see if you understand plagiarism, do this short quiz: http://www.lc.unsw.edu.au/plagiarism/plagquiz.html For information on how to acknowledge your sources and reference correctly, see: http://www.lc.unsw.edu.au/onlib/ref.html For the ASB Harvard Referencing Guide, see the ASB Referencing and Plagiarism web page: http://www.asb.unsw.edu.au/learningandteaching/studentservices/resources/Pages/ referencingandplagiarism.aspx In the School of Economics all cases of substantial plagiarism are reported to the Associate Head of School. The following penalties will apply:  Reduction in marks for the assessment item, including zero;  Failure in the course [00FL] in extreme cases;  Other additional penalties in accordance with the UNSW Procedures for Dealing with Student Plagiarism, may be considered in extreme cases;  All cases will be recorded on the UNSW Plagiarism Central…

    • 4450 Words
    • 18 Pages
    Satisfactory Essays
  • Powerful Essays

    Dummy Variables

    • 2956 Words
    • 12 Pages

    4. Zellner, Arnold, "An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests for Aggregation…

    • 2956 Words
    • 12 Pages
    Powerful Essays
  • Powerful Essays

    Career Success

    • 6811 Words
    • 28 Pages

    22. Hair, J., Black, W., Babin, B., Anderson, R. and Tathman, R., Multivariate Data Analysis…

    • 6811 Words
    • 28 Pages
    Powerful Essays
  • Powerful Essays

    Probability and Statistics

    • 8229 Words
    • 33 Pages

    Introduction .................................................................................................................................................................. 7 What is this Regression Analysis? ..................................................................................................................... 7 Simple Linear Regression ....................................................................................................................................10 Formula in computing Simple Linear Regression ......................................................................................10 Steps in computing Regression…

    • 8229 Words
    • 33 Pages
    Powerful Essays
  • Satisfactory Essays

    Stat 231 Course Notes

    • 7029 Words
    • 29 Pages

    Estimates and Estimators 5.1 5.2 5.3 5.4 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maximum Likelihood Estimation (MLE) Algorithm . . . . . . . . . . . . . . . . . . . . . Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Biases in Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .…

    • 7029 Words
    • 29 Pages
    Satisfactory Essays
  • Better Essays

    Duncan Cramer, D. H. (2004). The SAGE Dictionary of Statistics. London, England: Sage Publications. doi:: http://dx.doi.org/10.4135/9780857020123…

    • 1038 Words
    • 3 Pages
    Better Essays
  • Powerful Essays

    Keltner, D., Van Kleef, G. A., Chen, S., & Kraus, M. W. (2008). A reciprocal influence model…

    • 4791 Words
    • 20 Pages
    Powerful Essays
  • Satisfactory Essays

    Excel

    • 273 Words
    • 2 Pages

    Statistics and parameters. Properties for a statistic. Central Limit Theorem. Distribution of the sample mean, difference in means and the proportion. Point and interval estimates for the mean, difference in means, and proportion. Hypotheses testing and types of errors. Significance levels and p values. Small sample testing: Chi square, t and F distributions and their properties. Applications of chi square and t distributions to interval estimates and tests. UNIT 2 : CLASSICAL TWO VARIABLE LINEAR REGRESSION MODEL Types of Data : Time Series, Cross Section and Panel Data. Concept of PRF and SRF. Estimation of the SRF using OLS. Analysis of variance and R squared. Understanding the residuals/error term. Assumptions of the model. Expectation and standard errors of the regression coefficients and the error term. Gauss Markov Theorem. Confidence intervals and tests on population regression coefficients, variance of population disturbance term, and forecasts. Testing the significance of the model as a whole. Testing the normality assumption. UNIT 3 : MULTIPLE REGRESSION MODEL The three variable case. Derivation of the coefficients. Correlation. Additional assumptions. Adjusted R square. Confidence intervals and testing of the regression coefficients. F and t tests for structural stability, contribution and justification of an explanatory variable. UNIT 4 : OTHER FUNCTIONAL FORMS Regressions in deviation form and through the origin. The log-log, log-lin, lin-log, reciprocal, log-reciprocal models with application. UNIT 5 : DUMMY VARIABLES Intercept, Slope Dummy variables. Interaction between qualitative variables. Interaction between quantitative and qualitative variables. Dummies for testing for the presences of Seasonal Trends. Main Readings 1. Christopher Dougherty, Introductory Econometrics 3rd Edition Oxford University Press (2007) 2. Gujarati , Damodar : Basic Econometrics , 3rd edition Mc.Graw Hill,…

    • 273 Words
    • 2 Pages
    Satisfactory Essays
  • Satisfactory Essays

    Sas Lecture

    • 676 Words
    • 3 Pages

    In the previous two lectures, we learnt how to obtain the residuals of the estimation and to formally test for heteroscedasticity in the model. In this lecture, we will focus on testing the model errors for serial correlation.…

    • 676 Words
    • 3 Pages
    Satisfactory Essays
  • Best Essays

    B. Summary Statistics C. Testing for Misspecification in the Model D. Testing for Multicollinearity E. Testing for Heteroscedasticity VI. CONCLUSION VII. BIBLIOGRAPHY…

    • 4320 Words
    • 18 Pages
    Best Essays
  • Powerful Essays

    extra

    • 6263 Words
    • 31 Pages

    Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation…

    • 6263 Words
    • 31 Pages
    Powerful Essays
  • Best Essays

    Intro to Descriptive Statistics

    • 32380 Words
    • 274 Pages

    Bias and variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .…

    • 32380 Words
    • 274 Pages
    Best Essays
  • Powerful Essays

    Regression

    • 44445 Words
    • 178 Pages

    DeCoster, J. (2006). Applied Linear Regression Notes set 1. Retrieved (month, day, and year you…

    • 44445 Words
    • 178 Pages
    Powerful Essays
  • Powerful Essays

    C.A.S.E. – Center for Applied Statistics and Economics Institute for Statistics and Econometrics Humboldt-Universität zu Berlin…

    • 23891 Words
    • 96 Pages
    Powerful Essays