Leonhard Euler-Contribution

Topics: Number theory, Prime number, Mathematics Pages: 2 (714 words) Published: July 24, 2012
Leonhard Euler (1707-1783) Switzerland

Euler may be the most influential mathematician who ever lived (though some would make him second to Euclid); he ranks #77 on Michael Hart's famous list of the Most Influential Persons in History. His colleagues called him "Analysis Incarnate." Laplace, famous for denying credit to fellow mathematicians, once said "Read Euler: he is our master in everything." His notations and methods in many areas are in use to this day. Euler was the most prolific mathematician in history and is often judged to be the best algorist of all time. (The ranking #4 may seem too low for this supreme mathematician, but Gauss succeeded at proving several theorems which had stumped Euler.)

Just as Archimedes extended Euclid's geometry to marvelous heights, so Euler took marvelous advantage of the analysis of Newton and Leibniz: He gave the world modern trigonometry, pioneered (along with Lagrange) the calculus of variations, generalized and proved the Newton-Giraud formulae, etc. He was also supreme at discrete mathematics, inventing graph theory. He also invented the concept of generating functions; for example, letting p(n) denote the number of partitions of n, Euler found the lovely equation: Sn p(n) xn = 1 / ?k (1 - xk)

Euler was also a major figure in number theory: He proved that the sum of the reciprocals of primes less than x is approx. (ln ln x), invented the totient function and used it to generalize Fermat's Little Theorem, found both the largest then-known prime and the largest then-known perfect number, proved e to be irrational, proved that all even perfect numbers must have the Mersenne number form that Euclid had discovered 2000 years earlier, and much more. Euler was also first to prove several interesting theorems of geometry, including facts about the 9-point Feuerbach circle; relationships among a triangle's altitudes, medians, and circumscribing and inscribing circles; and an expression for a...
Continue Reading

Please join StudyMode to read the full document

You May Also Find These Documents Helpful

  • Leonhard Euler Essay
  • Leonhard Euler Essay
  • Euler and Hamiltonian Circuits Essay
  • Leonhard Euler: A Biography Essay
  • Compilation of Mathematicians and Their Contributions Essay
  • Leonhard Euler Essay
  • History on Paul Euler Essay
  • Contribution Essay

Become a StudyMode Member

Sign Up - It's Free