Preview

Graphene

Good Essays
Open Document
Open Document
7188 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Graphene
pubs.acs.org/NanoLett

Atmospheric Oxygen Binding and Hole Doping in Deformed Graphene on a SiO2 Substrate
Sunmin Ryu,†,| Li Liu,‡,| Stephane Berciaud,‡,⊥ Young-Jun Yu,§ Haitao Liu,‡ Philip Kim,§ George W. Flynn,*,‡ and Louis E. Brus*,‡
Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi 446-701, Korea and ‡ Department of Chemistry and § Department of Physics, Columbia University, New York, New York 10027, United States
ABSTRACT Using micro-Raman spectroscopy and scanning tunneling microscopy, we study the relationship between structural distortion and electrical hole doping of graphene on a silicon dioxide substrate. The observed upshift of the Raman G band represents charge doping and not compressive strain. Two independent factors control the doping: (1) the degree of graphene coupling to the substrate and (2) exposure to oxygen and moisture. Thermal annealing induces a pronounced structural distortion due to close coupling to SiO2 and activates the ability of diatomic oxygen to accept charge from graphene. Gas flow experiments show that dry oxygen reversibly dopes graphene; doping becomes stronger and more irreversible in the presence of moisture and over long periods of time. We propose that oxygen molecular anions are stabilized by water solvation and electrostatic binding to the silicon dioxide surface. KEYWORDS Graphene, Raman spectroscopy, scanning tunneling microscopy (STM), chemical doping, ripple, oxygen


raphene, a single sheet of graphite, has been the subject of intensive research owing to its potential application in electrical devices,1 flexible and transparent electrodes,2 ultrathin membranes,3 and various nanocomposites.4 Recent reports of efficient chemical growth5,6 and band gap tuning in double-layered graphene7 have expanded our ability to synthesize and control graphene for these applications.8 Initial reports of thickness-dependent chemical reactivity,9,10 photochemical/electrochemical reactivity,11 basal plane



References: AND NOTES (1) (2) (3) (4) Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183–191. Eda, G.; Fanchini, G.; Chhowalla, M. Nat. Nanotechnol. 2008, 3, 270. Bunch, J. S.; Verbridge, S. S.; Alden, J. S.; Zande, A. M. v. d.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L. Nano Lett. 2008, 8, 2458–2462. Wakabayashi, K.; Pierre, C.; Dikin, D. A.; Ruoff, R. S.; Ramanathan, T.; Brinson, L. C.; Torkelson, J. M. Macromolecules 2008, 41, 1905–1908. DOI: 10.1021/nl1029607 | Nano Lett. 2010, 10, 4944-–4951 4950 (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33) (34) (35) Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Nature 2009, 457, 706–710. Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Science 2009, 324, 1312–1314. Zhang, Y.; Tang, T.-T.; Girit, C.; Hao, Z.; Martin, M. C.; Zettl, A.; Crommie, M. F.; Shen, Y. R.; Wang, F. Nature 2009, 459, 820– 823. Geim, A. K. Science 2009, 324, 1530–1534. Liu, L.; Ryu, S.; Tomasik, M. R.; Stolyarova, E.; Jung, N.; Hybertsen, M. S.; Steigerwald, M. L.; Brus, L. E.; Flynn, G. W. Nano Lett. 2008, 8, 1965. Ryu, S.; Han, M. Y.; Maultzsch, J.; Heinz, T. F.; Kim, P.; Steigerwald, M. L.; Brus, L. E. Nano Lett. 2008, 8, 4597–4602. Liu, H.; Ryu, S.; Chen, Z.; Steigerwald, M. L.; Nuckolls, C.; Brus, L. E. J. Am. Chem. Soc. 2009, 131, 17099–17101. Elias, D. C.; Nair, R. R.; Mohiuddin, T. M. G.; Morozov, S. V.; Blake, P.; Halsall, M. P.; Ferrari, A. C.; Boukhvalov, D. W.; Katsnelson, M. I.; Geim, A. K.; Novoselov, K. S. Science 2009, 323, 610. Bekyarova, E.; Itkis, M. E.; Ramesh, P.; Berger, C.; Sprinkle, M.; Heer, W. A. d.; Haddon, R. C. J. Am. Chem. Soc. 2009, 131, 1336– 1337. Jung, N.; Kim, N.; Jockusch, S.; Turro, N. J.; Kim, P.; Brus, L. Nano Lett. 2009, 9, 4133–4137. Perebeinos, V.; Avouris, P. Phys. Rev. B 2010, 81, 195442. Perebeinos, V.; Rotkin, S. V.; Petrov, A. G.; Avouris, P. Nano Lett. 2009, 9, 312–316. Rotkin, S. V.; Perebeinos, V.; Petrov, A. G.; Avouris, P. Nano Lett. 2009, 9, 1850–1855. Chen, J. H.; Jang, C.; Xiao, S. D.; Ishigami, M.; Fuhrer, M. S. Nat. Nanotechnol. 2008, 3, 206–209. Berciaud, S.; Ryu, S.; Brus, L. E.; Heinz, T. F. Nano Lett. 2009, 9, 346–352. Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Nat. Mater. 2007, 6, 652–655. Lui, C. H.; Liu, L.; Mak, K. F.; Flynn, G. W.; Heinz, T. F. Nature 2009, 462, 339–341. Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L.; Hone, J. arXiv:1005.4917v1 [cond-mat.mes-hall] 2010. Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. Nature 2007, 446, 60–63. Bao, W.; Miao, F.; Chen, Z.; Zhang, H.; Jang, W.; Dames, C.; Lau, C. N. Nat. Nanotechnol. 2009, 4, 562. Kim, E. A.; Neto, A. H. C. Europhys. Lett. 2008, 84, 57007. Boukhvalov, D. W.; Katsnelson, M. I. J. Phys. Chem. C 2009, 113, 14176–14178. Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Fundenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Solid State Commun. 2008, 146, 351. Ni, Z. H.; Wang, H. M.; Ma, Y.; Kasim, J.; Wu, Y. H.; Shen, Z. X. ACS Nano 2008, 2, 1033–1039. Chen, C. C.; Bao, W. Z.; Theiss, J.; Dames, C.; Lau, C. N.; Cronin, S. B. Nano Lett. 2009, 9, 4172–4176. Jurchescu, O. D.; Baas, J.; Palstra, T. T. M. Appl. Phys. Lett. 2005, 87, No. 052102. Aubry, J.-M.; Pierlot, C.; Rigaudy, J.; Schmidt, R. Acc. Chem. Res. 2003, 36, 668. Collins, P. G.; Bradley, K.; Ishigami, M.; Zettl, A. Science 2000, 287, 1801. Abdou, M. S. A.; Orfino, F. P.; Xie, Z. W.; Deen, M. J.; Holdcroft, S. Adv. Mater. 1994, 6, 838–841. Nguyen, K. T.; Gaur, A.; Shim, M. Phys. Rev. Lett. 2007, 98, 145504. Stolyarova, E.; Rim, K. T.; Ryu, S.; Maultzsch, J.; Kim, P.; Brus, L. E.; Heinz, T. F.; Hybertsen, M. S.; Flynn, G. W. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 9209–9212. (36) Ishigami, M.; Chen, J. H.; Cullen, W. G.; Fuhrer, M. S.; Williams, E. D. Nano Lett. 2007, 7, 1643–1648. (37) Geringer, V. Phys. Rev. Lett. 2009, 102, No. 076102. (38) Mrstik, B. J.; Kaplan, R.; Reinecke, T. L.; Hove, M. V.; Tong, S. Y. Phys. Rev. B 1977, 15, 897–900. (39) Palmari, J.; Rasigni, G.; Rasigni, M.; Palmari, J. P.; Hugotlegoff, A.; Llebaria, A. J. Opt. Soc. Am. A 1986, 3, 410. (40) Varnier, F.; Mayani, N.; Rasigni, G. Appl. Opt. 1989, 28, 127. (41) Mohiuddin, T. M. G.; Lombardo, A.; Nair, R. R.; Bonetti, A.; Savini, G.; Jalil, R.; Bonini, N.; Basko, D. M.; Galiotis, C.; Marzari, N.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C. Phys. Rev. B 2009, 79, 205433. (42) Huang, M.; Yan, H.; Chen, C.; Song, D.; Heinz, T. F.; Hone, J. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 7304–7308. (43) Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurhthy, H. R.; Geim, A. K.; Ferrari, A. C.; Sood, A. K. Nat. Nanotechnol. 2008, 3, 210– 215. (44) Yan, J.; Zhang, Y.; Kim, P.; Pinczuk, A. Phys. Rev. Lett. 2007, 98, 166802/1–166802/4. (45) Metzger, C.; Re’mi, S.; Liu, M.; Kusminskiy, S. V.; Neto, A. H. C.; Swan, A. K.; Goldberg, B. B. Nano Lett. 2010, 10, 6–10. (46) Romero, H. E.; Shen, N.; Joshi, P.; Gutierrez, H. R.; Tadigadapa, S. A.; Sofo, J. O.; Eklund, P. C. ACS Nano 2008, 2, 2037. (47) Pisana, S.; Lazzeri, M.; Casiraghi, C.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C.; Mauri, F. Nat. Mater. 2007, 6, 198–201. (48) Minot, E. D.; Yaish, Y.; Sazonova, V.; McEuen, P. L. Nature 2004, 428, 536–539. (49) Casiraghi, C.; Pisana, S.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C. Appl. Phys. Lett. 2007, 91, 233108/1–233108/3. (50) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666–9. (51) Mashoff, T.; Pratzer, M.; Geringer, V.; Echtermeyer, T. J.; Lemme, M. C.; Liebmann, M.; Morgenstern, M. Nano Lett. 2010, 10, 461– 465. (52) Cadelano, E.; Palla, P. L.; Giordano, S.; Colombo, L. Phys. Rev. Lett. 2009, 102, 235502. (53) Gibertini, M.; Tomadin, A.; Polini, M.; Fasolino, A.; Katsnelson, M. I. Phys. Rev. B , 81, 12. (54) de Andres, P. L.; Verges, J. A. Appl. Phys. Lett. 2008, 93, 3. (55) Seip, M.; Brauer, H. D. J. Am. Chem. Soc. 1992, 114, 4486. (56) Sharma, R.; Baik, J. H.; Perera, C. J.; Strano, M. S. Nano Lett. 2010, 10, 398–405. (57) Dukovic, G.; White, B.; Zhou, Z.; Wang, F.; Jockusch, S.; Heinz, T.; Turro, N.; Friesner, R.; Brus, L. J. Am. Chem. Soc. 2004, 126, 15269. (58) Lucchese, M. M.; Stavale, F.; Ferreira, E. H. M.; Vilani, C.; Moutinho, M. V. O.; Capaz, R. B.; Achete, C. A.; Jorio, A. Carbon , 48, 1592–1597. (59) Shamir, N.; Mihaychuk, J. G.; van Driel, H. M.; Kreuzer, H. J. Phys. Rev. Lett. 1999, 82, 359–361. (60) Kim, W.; Javey, A.; Vermesh, O.; Wang, O.; Li, Y. M.; Dai, H. J. Nano Lett. 2003, 3, 193–198. (61) Datta, S. S.; Strachan, D. R.; Mele, E. J.; Johnson, A. T. C. Nano Lett. 2009, 9, 7–11. (62) Chakrapani, V.; Angus, J. C.; Anderson, A. B.; Wolter, S. D.; Stoner, B. R.; Sumanasekera, G. U. Science 2007, 318, 1424–1430. (63) Sque, S. J.; Jones, R.; Briddon, P. R. Phys. Status Solidi A 2007, 204, 3078–3084. (64) Aguirre, C. M.; Levesque, P. L.; Paillet, M.; Lapointe, F.; St-Antoine, B. C.; Desjardins, P.; Martel, R. Adv. Mater. 2009, 21, 3087–3091. (65) Moser, J.; Verdaguer, A.; Jimenez, D.; Barreiro, A.; Bachtold, A. ´ Appl. Phys. Lett. 2008, 92, 123507. (66) Rudich, Y.; Benjamin, I.; Naaman, R.; Thomas, E.; Trakhtenberg, S.; Ussyshkin, R. J. Phys. Chem. A 2000, 104, 5238. © 2010 American Chemical Society 4951 DOI: 10.1021/nl1029607 | Nano Lett. 2010, 10, 4944-–4951

You May Also Find These Documents Helpful

Related Topics