Functional Magnetic Resonance Imaging and Spectroscopic Imaging of the Brain: Application of Fmri and Fmrs to Reading Disabilities and Education

Topics: Magnetic resonance imaging, Neuroimaging, Brain Pages: 29 (9479 words) Published: September 21, 2005
Todd L. Richards
Department of Radiology, University of Washington, Seattle, WA

Address Correspondence to:

Todd L. Richards, PhD
Department of Radiology, Box 357115
University of Washington
Seattle, WA 98195
Phone: 206-598-6725
Fax: 206-543-3495

Acknowledgement: Grant No. P 50 33812 from the US National Institute of Child Health and Human Development (NICHD) supported preparation of this article.

This tutorial/review covers functional brain imaging methods and results used to study language and reading disabilities. Although the main focus of this paper is on functional MRI and functional MR spectroscopy, other imaging techniques are discussed briefly such as positron emission tomography (PET), electroencephalography (EEG) , magnetoencepholography (MEG), and MR diffusion imaging. These functional brain imaging studies have demonstrated that dyslexia is a brain-based disorder and that serial imaging studies can be used to study the effect of treatment on functional brain activity.

Functional Magnetic Resonance Imaging and Spectroscopy of the Brain: Application of fMRI and fMRS to Reading Disabilities and Education Functional magnetic resonance imaging (fMRI) and functional magnetic resonance spectroscopy (fMRS) have been used to study adults and children with developmental reading disabilities. These individuals struggled or struggle in learning to read despite normal intelligence and sensory abilities. In contrast, individuals with acquired dyslexia had normal reading function but lost it due to disease or injury. The purposes of this article are to a) provide a brief tutorial on fMRI and fMRS, and b) provide an overview of the most recent findings in the use of these neuroimaging tools to study learning disabilities specific to reading (dyslexia). This information should allow professionals in the fields of education and psychology to be more critical consumers of the growing body of research on functional brain imaging of dyslexia. Recent data from functional neuroimaging of the brain in children with dyslexia has demonstrated that there is a biological basis for developmental dyslexia. However, even though dyslexia is a brain-based disorder, it is treatable, as will be discussed. Tutorial on Functional MR Imaging and Spectroscopy

Functional MRI (fMRI) and functional MR spectroscopy (fMRS) are techniques that measure different physiological parameters of neural activation (See Table 1). These functional brain imaging techniques are very labor intensive for both acquisition and processing the data and require a multidisciplinary team of scientists such as psychologists, MRI physicist/engineers, neuroscientists, neuroradiologists, and computer scientists. These brain imaging techniques are referred to as functional (rather than structural) because participants perform tasks while they are in the magnet; as a result, analyses of the imaging permit conclusions about activation of the functioning brain rather than neuroanatomy of the resting brain. These techniques are often referred to as in vivo because they can be administered to living people. Both of these techniques are noninvasive and are based on magnetic resonance imaging, which is briefly described here. Noninvasive means in part that the subject is not exposed to ionizing radiation. In contrast, the PET technique, which is also included in Table 1, is invasive and cannot be used to study healthy children. MRI is a way to look inside the body (brain in this case) without using X-rays. The body contains hydrogen nuclei (protons) that can absorb and give off energy in the presence of a magnetic field. MRI scanners use a magnet, which creates a strong, steady magnetic field. This magnetic field is very homogeneous near the center of the magnet where the head is positioned for a brain scan. This field causes the protons to line up together and spin at a specific frequency, which is...

References: Alexander, A. L., Hasan, K., Kindlmann, G., Parker, D. L., & Tsuruda, J. S. (2000). A geometric analysis of diffusion tensor measurements of the human brain. Magnetic Resonance In Medicine, 44(2), 283-291.
Assaf, Y., & Cohen, Y. (2000). Assignment of the water slow-diffusing component in the central nervous system using q-space diffusion MRS: implications for fiber tract imaging. Magnetic Resonance In Medicine, 43(2), 191-199.
Barch, D. M., Braver, T. S., Sabb, F. W., & Noll, D. C. (2000). Anterior cingulate and the monitoriing of response conflict: evidence from an fMRI study of overt verb generation. Journal of Coginitive Neuroscience, 12(2), 298-309.
Basser, P. J., Pajevic, S., Pierpaoli, C., Duda, J., & Aldroubi, A. (2000). In vivo fiber tractography using DT-MRI data [In Process Citation]. Magnetic Resonance In Medicine, 44(4), 625-632.
Beaulieu, C., D 'Arceuil, H., Hedehus, M., de Crespigny, A., Kastrup, A., & Moseley, M. E. (1999). Diffusion-weighted magnetic resonance imaging: theory and potential applications to child neurology. Seminars in Pediatric Neurology, 6(2), 87-100.
Best, M., & Demb, J. B. (1999). Normal planum temporale asymmetry in dyslexics with a magnocellular pathway deficit. Neuroreport, 10(3), 607-612.
Bhatnagar, S. C., Mandybur, G. T., Buckingham, H. W., & Andy, O. J. (2000). Language representation in the human brain: evidence from cortical mapping. Brain and Language, 74(2), 238-259.
Binder, J. R., Frost, J. A., Hammeke, T. A., Bellgowan, P. S., Springer, J. A., Kaufman, J. N., & Possing, E. T. (2000). Human temporal lobe activation by speech and nonspeech sounds. Cerebral Cortex, 10(5), 512-528.
Binder, J. R., Frost, J. A., Hammeke, T. A., Cox, R. W., Rao, S. M., & Prieto, T. (1997). Human Brain and Languageuage areas identified by functional magnetic resonance imaging. Journal of Neuroscience, 17, 353-362.
Binder, J. R., Frost, J. A., Hammeke, T. A., Rao, S. M., & Cox, R. W. (1996). Function of the left planum temporale in auditory and linguistic processing. Brain, 119, 1239-1247.
Brockway, J. P. (2000). Two functional magnetic resonance imaging f(MRI) tasks that may replace the gold standard, Wada testing, for language lateralization while giving additional localization information. Brain and Cognition, 43(1-3), 57-59.
Brunswick, N., McCrory, E., Price, C. J., Frith, C. D., & Frith, U. (1999). Explicit and implicit processing of words and pseudowords by adult developmental dyslexics: A search for Wernicke 's Wortschatz? Brain, 122(Pt 10), 1901-1917.
Burton, M. W., Small, S. L., & Blumstein, S. E. (2000). The role of segmentation in phonological processing: an fMRI investigation. Journal of Coginitive Neuroscience, 12(4), 679-690.
Cohen, L., Dehaene, S., Chochon, F., Lehericy, S., & Naccache, L. (2000). Language and calculation within the parietal lobe: a combined cognitive, anatomical and fMRI study. Neuropsychologia, 38(10), 1426-1440.
Demb, J. B., Boynton, G. M., & Heeger, D. J. (1997). Brain activity in visual cortex predicts individual differences in reading performance. Proceedings of the National Academy of Sciences of the United States of America, 94(24), 13363-13366.
Demb, J. B., Boynton, G. M., & Heeger, D. J. (1998). Functional magnetic resonance imaging of early visual pathways in dyslexia. Journal of Neuroscience, 18(17), 6939-6951.
Dronkers, N. F. (1996). A new brain region for coordinating speech articulation. Nature, 384(6605), 159-161.
Eden, G. F., VanMeter, J. W., Rumsey, J. M., Maisog, J. M., Woods, R. P., & Zeffiro, T. A. (1996). Abnormal processing of visual motion in dyslexia revealed by functional brain imaging [see comments]. Nature, 382(6586), 66-69.
Eden, G. F., & Zeffiro, T. A. (1998). Neural systems affected in developmental dyslexia revealed by functional neuroimaging. Neuron, 21(2), 279-282.
Frahm, J., Kruger, G., Merboldt, K. D., & Kleinschmidt, A. (1996). Dynamic uncoupling and recoupling of perfusion and oxidative metabolism during focal brain activation in man. Magnetic Resonance In Medicine, 35(2), 143-148.
Friederici, A. D., Meyer, M., & von Cramon, D. Y. (2000a). Auditory language comprehension: an event-related fMRI study on the processing of syntactic and lexical information. Brain and Language, 74(2), 289-300.
Friederici, A. D., Opitz, B., & von Cramon, D. Y. (2000b). Segregating semantic and syntactic aspects of processing in the human brain: an fMRI investigation of different word types. Cerebral Cortex, 10(7), 698-705.
Georgiewa, P., Rzanny, R., Hopf, J. M., Knab, R., Glauche, V., Kaiser, W. A., & Blanz, B. (1999). fMRI during word processing in dyslexic and normal reading children [In Process Citation]. Neuroreport, 10(16), 3459-3465.
Hashimoto, R., Homae, F., Nakajima, K., Miyashita, Y., & Sakai, K. L. (2000). Functional differentiation in the human auditory and language areas revealed by a dichotic listening task. Neuroimage, 12(2), 147-158.
Hayes, C. E., & Mathis, C. M. (1996). Improved brain coil for fMRI and high resolution imaging: Berkeley.
Hillyard, S. A. (1998). An interview with Steven A. Hillyard, PhD. In M. S. Gazzaniga, R. B. Ivry, & G. R. Magnun (Eds.), Cognitive Neuroscience: The Biology of the Mind (pp. 220-221). New York: W. W. Norton.
Hynd, G. W., Semrud-Clikeman, M., Lorys, A. R., Novey, E. S., & Eliopulos, D. (1990). Brain morphology in developmental dyslexia and attention deficit disorder/hyperactivity. Archives of Neurology, 47(8), 919-926.
Ingvar, D. H. (1983). Serial aspects of language and speech related to prefrontal cortical activity. A selective review. Human Neurobiology, 2(3), 177-189.
Kansaku, K., Yamaura, A., & Kitazawa, S. (2000). Sex differences in lateralization revealed in the posterior language areas. Cerebral Cortex, 10(9), 866-872.
Klingberg, T., Vaidya, C. J., Gabrieli, J. D., Moseley, M. E., & Hedehus, M. (1999). Myelination and organization of the frontal white matter in children: a diffusion tensor MRI study. Neuroreport, 10(13), 2817-2821.
Krasuski, J., Horwitz, B., & Rumsey, J. M. (1996). A survey of functional and anatomical neuroimaging techniques. In G. R. Lyon & J. M. Rumsey (Eds.), Neuroimaging (pp. 25-51). Baltimore: Paul H. Brookes Publishing Co.
Laine, M., Salmelin, R., Helenius, P., & Marttila, R. (2000). Brain activation during reading in deep dyslexia: an MEG study. Journal of Coginitive Neuroscience, 12(4), 622-634.
Leung, H. C., Skudlarski, P., Gatenby, J. C., Peterson, B. S., & Gore, J. C. (2000). An event-related functional MRI study of the stroop color word interference task. Cerebral Cortex, 10(6), 552-560.
Lubs, H. A., Smith, S., Kimberling, W., Pennington, B., Gross-Glenn, K., & Duara, R. (1988). Dyslexia subtypes: genetics, behavior, and brain imaging. Research Publications - Association For Research In Nervous and Mental Disease, 66, 139-147.
Lurito, J. T., Kareken, D. A., Lowe, M. J., Chen, S. H., & Mathews, V. P. (2000). Comparison of rhyming and word generation with FMRI [In Process Citation]. Human Brain Mapping, 10(3), 99-106.
McCrory, E., Frith, U., Brunswick, N., & Price, C. (2000). Abnormal functional activation during a simple word repetition task: A PET study of adult dyslexics [In Process Citation]. Journal of Coginitive Neuroscience, 12(5), 753-762.
Nicolson, R. I., Fawcett, A. J., Berry, E. L., Jenkins, I. H., Dean, P., & Brooks, D. J. (1999). Association of abnormal cerebellar activation with motor learning difficulties in dyslexic adults. Lancet, 353(9165), 1662-1667.
Paulesu, E., Frith, U., Snowling, M., Gallagher, A., Morton, J., Frackowiak, R. S., & Frith, C. D. (1996). Is developmental dyslexia a disconnection syndrome? Evidence from PET scanning. Brain, 119(Pt 1), 143-157.
Pennington, B. F., Filipek, P. A., Lefly, D., Churchwell, J., Kennedy, D. N., Simon, J. H., Filley, C. M., Galaburda, A., Alarcon, M., & DeFries, J. C. (1999). Brain morphometry in reading-disabled twins. Neurology, 53(4), 723-729.
Poupon, C., Clark, C. A., Frouin, V., Regis, J., Bloch, I., Le Bihan, D., & Mangin, J. (2000). Regularization of diffusion-based direction maps for the tracking of brain white matter fascicles. Neuroimage, 12(2), 184-195.
Prichard, J. W. (1994). Nuclear magnetic resonance spectroscopy of seizure states. Epilepsia, 35 supp6, S14-20.
Richards, T., Corina, D., Serafini, S., Steury, K., Echelard, D. R., Dager, S., Abbott, R., Maravilla, K., & Berninger, V. (2000a). Functional MRI and functional MR spectroscopic imaging of dyslexia. Presented at Human Brain Mapping 2000.
Richardson, A. J., Cox, I. J., Sargentoni, J., & Puri, B. K. (1997). Abnormal cerebral phospholipid metabolism in dyslexia indicated by phosphorus-31 magnetic resonance spectroscopy. NMR In Biomedicine, 10(7), 309-314.
Robichon, F., Bouchard, P., Demonet, J., & Habib, M. (2000). Developmental dyslexia: re-evaluation of the corpus callosum in male adults. European Neurology, 43(4), 233-237.
Robichon, F., & Habib, M. (1998). Abnormal callosal morphology in male adult dyslexics: relationships to handedness and phonological abilities. Brain and Language, 62(1), 127-146.
Ross, B., & Michaelis, T. (1994). Clinical applications of magnetic resonance spectroscopy. Magnetic Resonance Quarterly, 10(4), 191-247.
Rumsey, J. M. (1996). Neuroimaging in developmental dyslexia:. In G. R. Lyon & J. M. Rumsey (Eds.), Neuroimaging: A Window to the Neurological Foundations of Learning and Behavior in Children (pp. 57-77). Baltimore: Brookes.
Rumsey, J. M., Horwitz, B., Donohue, B. C., Nace, K., Maisog, J. M., & Andreason, P. (1997). Phonological and orthographic components of word recognition. A PET-rCBF study. Brain, 120, 739-759.
Rumsey, J. M., Horwitz, B., Donohue, B. C., Nace, K. L., Maisog, J. M., & Andreason, P. (1999). A functional lesion in developmental dyslexia: left angular gyral blood flow predicts severity. Brain and Language, 70(2), 187-204.
Salmelin, R., Helenius, P., & Service, E. (2000). Neurophysiology of fluent and impaired reading: a magnetoencephalographic approach. Journal of Clinical Neurophysiology, 17(2), 163-174.
Sanders, J. A., & Orrison, W. W. J. (1995). Functional Magnetic Resonance Imaging. In W. W. Orrison, J. D. Lewine, J. A. Sanders, & M. F. Harshorne (Eds.), Functional Brain Imaging (pp. 239-326). St. Louis: Mosby.
Schurr, A., West, C. A., & Rigor, B. M. (1988). Lactate-supported synaptic function in the rat hippocampal slice preparation. Science, 240, 1326-1328.
Semrud-Clikeman, M., Hynd, G. W., Novey, E. S., & Eliopulos, D. (1992). Dyslexia and brain morphology: Relationships between neuroanatomical variation and neurolinguistic tasks. Learning and Individual Differences, 3, 225-242.
Serafini, S., Steury, K., Richards, T., Corina, D., Abbott, R., & Berninger, V. (2000). Comparison of fMRI and fMR spectroscopic imaging during language processing in children. Magnetic Resonance In Medicine, In press.
Shah, N. J., Steinhoff, S., Mirzazade, S., Zafiris, O., Grosse-Ruyken, M. L., Jancke, L., & Zilles, K. (2000). The effect of sequence repeat time on auditory cortex stimulation during phonetic discrimination. Neuroimage, 12(1), 100-108.
Simos, P. G., Breier, J. I., Fletcher, J. M., Bergman, E., & Papanicolaou, A. C. (2000). Cerebral mechanisms involved in word reading in dyslexic children: a magnetic source imaging approach. Cerebral Cortex, 10(8), 809-816.
Tallal, P., Merzenich, M. M., Miller, S., & Jenkins, W. (1998). Language learning impairments: integrating basic science, technology, and remediation. Experimental Brain Research, 123(1-2), 210-219.
Thulborn, K. R., Carpenter, P. A., & Just, M. A. (1999). Plasticity of language-related brain function during recovery from stroke. Stroke, 30(4), 749-754.
Trauner, D., Wulfeck, B., Tallal, P., & Hesselink, J. (2000). Neurological and MRI profiles of children with developmental language impairment. Developmental Medicine and Child Neurology, 42(7), 470-475.
Tsacopoulos, M., & Magistretti, P. J. (1996). Metabolic coupling between glia and neurons. Journal of Neuroscience, 16(3), 877-885.
Ulug, A. M., Moore, D. F., Bojko, A. S., & Zimmerman, R. D. (1999). Clinical use of diffusion-tensor imaging for diseases causing neuronal and axonal damage. AJNR American Journal of Neuroradiology, 20(6), 1044-1048.
Vanni, S., Uusitalo, M. A., Kiesila, P., & Hari, R. (1997). Visual motion activates V5 in dyslexics. Neuroreport, 8(8), 1939-1942.
Vikingstad, E. M., George, K. P., Johnson, A. F., & Cao, Y. (2000). Cortical language lateralization in right handed normal subjects using functional magnetic resonance imaging. Journal of the Neurological Sciences, 175(1), 17-27.
Webb, P. G., Sailasuta, N., Kohler, S. J., Raidy, T., Moats, R. A., & Hurd, R. E. (1994). Automated single-voxel proton MRS: technical development and multisite verification. Magnetic Resonance In Medicine, 31(4), 365-373.
Xiong, J., Rao, S., Jerabek, P., Zamarripa, F., Woldorff, M., Lancaster, J., & Fox, P. T. (2000). Intersubject variability in cortical activations during a complex language task. Neuroimage, 12(3), 326-339.
Continue Reading

Please join StudyMode to read the full document

You May Also Find These Documents Helpful

  • Essay on Functional Magnetic Resonance Imaging (Fmri) and Phrenology
  • Essay about Brain Imaging
  • Essay on Magnetic Resonance Imaging
  • The role of magnetic resonance imaging Essay
  • Magnetic Resonance Imaging Essay
  • Brain Imaging Techniques Essay
  • Magnetic resonance imaging (MRI) Essay
  • Magnetic Resonance Imaging and Original Research Essay

Become a StudyMode Member

Sign Up - It's Free