Effects on Wildlife

Topics: Mobile phone, GSM, Electromagnetic radiation Pages: 23 (8162 words) Published: March 19, 2012
Pathophysiology 16 (2009) 191–199

Electromagnetic pollution from phone masts. Effects on wildlife Alfonso Balmori
Direccion General del Medio Natural, Consejería de Medio Ambiente, Junta de Castilla y Leon, C/Rigoberto Cortejoso, 14, 47014 Valladolid, Spain Received 10 August 2008; received in revised form 28 August 2008; accepted 30 January 2009

Abstract A review on the impact of radiofrequency radiation from wireless telecommunications on wildlife is presented. Electromagnetic radiation is a form of environmental pollution which may hurt wildlife. Phone masts located in their living areas are irradiating continuously some species that could suffer long-term effects, like reduction of their natural defenses, deterioration of their health, problems in reproduction and reduction of their useful territory through habitat deterioration. Electromagnetic radiation can exert an aversive behavioral response in rats, bats and birds such as sparrows. Therefore microwave and radiofrequency pollution constitutes a potential cause for the decline of animal populations and deterioration of health of plants living near phone masts. To measure these effects urgent specific studies are necessary. © 2009 Elsevier Ireland Ltd. All rights reserved. Keywords: Effects on wildlife; Effects on birds; Electromagnetic radiation; Mammals; Microwaves; Mobile telecommunications; Non-thermal effects; Phone masts; Radiofrequencies

1. Introduction Life has evolved under the influence of two omnipresent forces: gravity and electromagnetism. It should be expected that both play important roles in the functional activities of organisms [1]. Before the 1990’s radiofrequencies were mainly from a few radio and television transmitters, located in remote areas and/or very high places. Since the introduction of wireless telecommunication in the 1990’s the rollout of phone networks has caused a massive increase in electromagnetic pollution in cities and the countryside [2,3]. Multiple sources of mobile communication result in chronic exposure of a significant part of the wildlife (and man) to microwaves at non-thermal levels [4]. In recent years, wildlife has been chronically exposed to microwaves and RFR (Radiofrequency radiation) signals from various sources, including GSM and UMTS/3G wireless phones and base stations, WLAN (Wireless Local Area Networks), WPAN (Wireless Personal Area Networks such as Bluetooth), and DECT (Digital Enhanced (former European) Cordless Telecommunications) that are erected indiscriminately without studies of environmental impact measuring E-mail addresses: abalmori@ono.com, balmaral@jcyl.es. 0928-4680/$ – see front matter © 2009 Elsevier Ireland Ltd. All rights reserved. doi:10.1016/j.pathophys.2009.01.007

long-term effects. These exposures are characterized by low intensities, varieties of signals, and long-term durations. The greater portion of this exposure is from mobile telecommunications (geometric mean in Vienna: 73% [5]). In Germany the GSM cellular phone tower radiation is the dominating high frequency source in residential areas [6]. Also GSM is the dominating high frequency source in the wilderness of Spain (personal observation). Numerous experimental data have provided strong evidence of athermal microwave effects and have also indicated several regularities in these effects: dependence of frequency within specific frequency windows of “resonance-type”; dependence on modulation and polarization; dependence on intensity within specific intensity windows, including superlow power density comparable with intensities from base stations/masts [4,7–9]. Some studies have demonstrated different microwave effects depending on wavelength in the range of mm, cm or m [10,11]. Duration of exposure may be as important as power density. Biological effects resulting from electromagnetic field radiation might depend on dose, which indicates long-term accumulative effects [3,9,12]. Modulated and pulsed radiofrequencies seem to be...

References: [1] J.M.R. Delgado, Biological effects of extremely low frequency electromagnetic fields, J. Bioelectr. 4 (1985) 75–91. [2] A. Firstenberg, Microwaving Our Planet: The Environmental Impact of the Wireless Revolution, 11210, Cellular Phone Taskforce, Brooklyn, NY, 1997. [3] A.L. Galeev, The effects of microwave radiation from mobile telephones on humans and animals, Neurosci. Behav. Physiol. 30 (2000) 187–194. [4] I. Belyaev, Non-thermal biological effects of microwaves, Microw. Rev. 11 (2005) 13–29, http://www.mwr.medianis.net/pdf/Vol11No203-IBelyaev.pdf. [5] H.P. Hutter, H. Moshammer, P. Wallner, M. Kundi, Subjective symptoms, sleeping problems, and cognitive performance in subjects living near mobile phone base stations, Occup. Environ. Med. 63 (2006) 307–313. [6] T. Haumann, U. Munzenberg, W. Maes, P. Sierck, HF-radiation levels of GSM cellular phone towers in residential areas, in: 2nd International Workshop on Biological effects of EMFS, Rhodes, Greece, 2002. [7] W.R. Adey, Tissue interactions with non-ionizing electromagnetic fields, Physiol. Rev. 61 (1981) 435–514. [8] G.J. Hyland, Physics and biology of mobile telephony, Lancet 356 (2000) 1–8. [9] H. Lai, Biological effects of radiofrequency electromagnetic field, in: Encyclopaedia of Biomaterials and Biomedical Engineering, 2005, doi:10.1081/E-EBBE-120041846, pp. 1–8. [10] S. Kemerov, M. Marinkev, D. Getova, Effects of low-intensity electromagnetic fields on behavioral activity of rats, Folia Med. 41 (1999) 75–80. [11] N. Nikolaevich, A. Igorevna, and G. Vasil, Influence of highfrequency electromagnetic radiation at non-thermal intensities on the human body (A review of work by Russian and Ukrainian researchers), No place to hide, 3 (Supplement), 2001. [12] W.R. Adey, Bioeffects of mobile communications fields: possible mechanisms for cumulative dose. in: N. Kuster, Q. Balzano, J.C. Lin, (Eds.), Mobile communications safety, New York: Chapman & Hall, 1997, pp. 95–131. [13] A. Úbeda, M.A. Trillo, L. Chacón, M.J. Blanco, J. Leal, Chick embryo development can be irreversibly altered by early exposure to weak extremely-low-frequency magnetic fields, Bioelectromagnetics 15 (1994) 385–398. [14] I.U.G. Grigoriev, Role of modulation in biological effects of electromagnetic radiation, Radiats. Biol. Radioecol. 36 (1996) 659–670. [15] G.J. Hyland, The physiological and environmental effects of nonionising electromagnetic radiation, Working document for the STOA Panel, European Parliament, Directorate General for Research, 2001. [16] R. Santini, J.M. Santini, P. danze, M. Leruz, M. Seigne, Enquête sur la santé de riverains de stations relais: I. Incidences de la distance et du sexe, Pathol. Biol. 50 (2002) 369–373. [17] R. Santini, P. Santini, J.M. Le Ruz, M. Danze, M. Seigne, Survey study of people living in the vicinity of cellular phone base stations, Electromagn. Biol. Med. 22 (2003) 41–49. [18] R. Santini, P. Santini, J.M. Danze, P. Le Ruz, M. Seigne, Symptoms experienced by people in vicinity of base stations: II/Incidences of age, duration of exposure, location of subjects in relation to the antennas and other electromagnetic factors, Pathol. Biol. 51 (2003) 412–415. [19] E.A. Navarro, J. Segura, M. Portolés, C. Gómez Perretta, The microwave syndrome: a preliminary study in Spain, Electromagn. Biol. Med. 22 (2003) 161–169.
[20] G. Oberfeld, E. Navarro, M. Portoles, C. Maestu, C. Gomez-Perretta, The microwave syndrome—further aspects of a Spanish study, in: EBEA Congres Kos, Greece, 2004. [21] G. Abdel-Rassoul, M.A. Salem, A. Michael, F. Farahat, M. ElBatanouny, E. Salem, Neurobehavioral effects among inhabitants around mobile phone base stations, Neurotoxicology 28 (2007) 434–440. [22] I.N. Magras, T.D. Xenos, Radiation-induced changes in the prenatal development of mice, Bioelectromagnetics 18 (1997) 455–461. [23] A. Balmori, Possible effects of electromagnetic fields from phone masts on a population of white stork (Ciconia ciconia), Electromagn. Biol. Med. 24 (2005) 109–119. [24] J. Everaert, D. Bauwens, A possible effect of electromagnetic radiation from mobile phone base stations on the number of breeding House Sparrows (Passer domesticus), Electromagn. Biol. Med. 26 (2007) 63–72. [25] A. Balmori, Ö. Hallberg, The urban decline of the house sparrow (Passer domesticus): a possible link with electromagnetic radiation, Electromagn. Biol. Med. 26 (2007) 141–151. [26] M.J. Raven, D.G. Noble, S.R. Baillie, The breeding bird survey (2002), BTO Research Report 334, British Trust for Ornithology, Thetford, 2003. [27] J.D. Summers-Smith, The decline of the house sparrow: a review, Brit. Birds 96 (2003) 439–446. [28] J. De Laet, Ligue Royale Belgue pour la Protection des Oiseaux avec l’Université de Gand, 2004, (Accessed on May 20, 2008). [29] A. Prowse, The urban decline of the house sparrow, Brit. Birds 95 (2002) 143–146. [30] A. Balmori, Aves y telefonía móvil. Resultados preliminares de los efectos de las ondas electromagnéticas sobre la fauna urbana, El ecologista 36 (2003) 40–42. [31] C.K. Chou, A.W. Guy, L.L. Kunz, R.B. Johnson, J.J. Crowley, J.H. Krupp, Long-term, low-level microwave irradiation of rats, Bioelectromagnetics 13 (1992) 469–496. [32] E.T. Novoselova, E.E. Fesenko, Stimulation of production of tumour necrosis factor by murine macrophages when exposed in vivo and in vitro to weak electromagnetic waves in the centimeter range, Biofizika 43 (1998) 1132–1133. [33] K.J. Fernie, D.M. Bird, Evidence of oxidative stress in American kestrels exposed to electromagnetic fields, Environ. Res. A 86 (2001) 198–207. [34] R.C. Beasond, P. Semm, Responses of neurons to an amplitude modulated microwave stimulus, Neurosci. Lett. 33 (2002) 175–178. [35] K.J. Fernie, D.M. Bird, R.D. Dawson, P.C. Lague, Effects of electromagnetic fields on the reproductive success of American kestrels, Physiol. Biochem. Zool. 73 (2000) 60–65. [36] K.J. Fernie, N.J. Leonard, D.M. Bird, Behavior of free-ranging and captive American kestrels under electromagnetic fields, J. Toxicol. Environ. Health, Part A 59 (2000) 597–603. [37] K.J. Fernie, S.J. Reynolds, The effects of electromagnetic fields from power lines on avian reproductive biology and physiology: a review., J. Toxicol. Environ. Health, Part B 8 (2005) 127–140. [38] K.J. Fernie, D.M. Bird, Effects of electromagnetic fields on body mass and food-intake of American kestrels, Condor 101 (1999) 616–621. [39] S. Dasdag, M.A. Ketani, Z. Akdag, A.R. Ersay, I. Sar, Ö.C. Demirtas, M.S. Celik, Whole body microwave exposure emitted by cellular phones and testicular function of rats, Urol. Res. 27 (1999) 219–223. [40] M. Davoudi, C. Brössner, W. Kuber, Der Einfluss elektromagnetischer wellen auf die Spermienmotilität, J. für Urol. Urogynäkol. 9 (2002) 18–22. [41] I. Fejes, Z. Za Vaczki, J. Szollosi, R.S. Kolosza, J. Daru, L. Kova Cs, L.A. Pa, Is there a relationship between cell phone use and semen quality? Arch. Androl. 51 (2005) 385–393. [42] P. Stefanis, A. Drakeley, R. Gazvani, D.I. Lewis-Jones, Growing concern over the safety of using mobile phones and male fertility, Arch. Androl. 52 (2006) 9–14.
198
A. Balmori / Pathophysiology 16 (2009) 191–199 [63] F. Batellier, I. Couty, D. Picard, J.P. Brillard, Effects of exposing chicken eggs to a cell phone in “call” position over the entire incubation period, Theriogenology 69 (2008) 737–745. [64] L. Veterány, A. Veterányová, J. Jedlicka, Effect of magnetic field on embryonic mortality, Cesk. Fysiol. 50 (2001) 141–143. [65] K.B. Hotary, K.R. Robinson, Evidence of a role for endogenous electrical fields in chick embryo development, Development 114 (1992) 985–996. [66] M. Mevissen, M. Haübler, Acceleration of mammary tumorigenesis by exposure of 7,12-dimethylbenz(a)anthracene-treated female rats in a 50-Hz, 100- T magnetic field: replication study, J. Toxicol. Environ. Health, Part A 53 (1998) 401–418. [67] D. Flipo, M. Fournier, C. Benquet, P. Roux, C. Le Boulaire, Increased apoptosis, changes in intracellular Ca2+ , and functional alterations in lymphocytes and macrophages after in vitro exposure to static magnetic field, J. Toxicol. Environ. Health, Part A 54 (1998) 63–76. [68] M. Fedrowitz, K. Kamino, W. Löscher, Significant differences in the effects of magnetic field exposure on 7,12 dimethylbenz (a)anthracene-induced mammary carcinogenesis in two sub-strains of Sprague-Dawley rats, Cancer Res. 64 (2004) 243–251. [69] A.H. Frey, S.R. Feld, Avoidance by rats of illumination with low power nonionizing electromagnetic energy, J. Comp. Physiol. Psychol. 89 (1975) 183–188. [70] M.A. Navakatikian, L.A. Tomashevskaya, Phasic behavioral and endocrine effects of microwaves of nonthermal intensity, in: D.O. Carpenter (Ed.), Biological Effects of Electric and Magnetic Fields, 1, Academic Press, San Diego, CA, 1994. –c [71] D.D. Krsti´ , B.J. Ðindi´ , D.T. Sokolovi´ , V.V. Markovi´ , D.M. c c c Petkovi´ , S.B. Radi´ , The results of experimental exposition of mice c c by mobile telephones, in: TELSIKS Conference, Serbia and Montenegro, Microw. Rev. (2005) 34–37. [72] I.U.G. Grigoriev, S.N. Luk’ianova, V.P. Makarov, V.V. Rynskov, N.V. Moiseeva, Motor activity off rabbits in conditions of chronic lowintensity pulse microwave irradiation, Radiat. Biol. Radioecol. 35 (1995) 29–35. [73] B. Nicholls, P.A. Racey, Bats avoid radar installations: Could electromagnetic fields deter bats from colliding with wind turbines? PLOS One 3 (2007) e297. [74] A. Balmori Murciélago rabudo–Tadarida teniotis, En: Enciclopedia Virtual de los Vertebrados Espa˜ oles, Carrascal, L.M., Salvador, n A. (Eds.), Museo Nacional de Ciencias Naturales, Madrid, 2004c, . [75] T.A. Marks, C.C. Ratke, W.O. English, Strain voltage and developmental, reproductive and other toxicology problems in dogs, cats and cows: a discussion, Vet. Human Toxicol. 37 (1995) 163–172. [76] W. Löscher, G. Käs, Conspicuous behavioural abnormalities in a dairy cow herd near a TV and radio transmitting antenna, Pract. Vet. Surg. 29 (1998) 437–444. [77] A. Yurekli, M. Ozkan, T. Kalkan, H. Saybasili, H. Tuncel, P. Atukeren, K. Gumustas, S. Seker, GSM Base Station Electromagnetic Radiation and Oxidative Stress in Rats, Electromagn. Biol. Med. 25 (2006) 177–188. [78] S. Tofani, G. Agnesod, P. Ossola, S. Ferrini, R. Bussi, Effects of continuous low-level exposure to radio-frequency radiation on intrauterine development in rats, Health Phys. 51 (1986) 489– 499. [79] T.P. Moorhouse, D.W. Macdonald, Indirect negative impacts of radiocollaring: sex ratio variation in water voles, J. Appl. Ecol. 42 (2005) 91. [80] R.F. McGivern, R.Z. Sokol, W.R. Adey, Prenatal exposure to a lowfrequency electromagnetic field demasculinizes adult scent marking behavior and increases accessory sex organ weights in rats, Teratology 41 (1990) 1–8. [81] G.M. Lee, R.R. Neutra, L. Hristova, M. Yost, R.A. Hiatt, A Nested Case-Control Study of Residential and Personal Magnetic Field Measures and Miscarriages, Epidemiology 13 (2002) 21–31.
[43] O. Erogul, E. Oztas, I. Yildirim, T. Kir, E. Aydur, G. Komesli, H.C. Irkilata, M.K. Irmak, A.F. Peker, Effects of electromagnetic radiation from a cellular phone on human sperm motility: an in vitro study, Arch. Med. Res. 37 (2006) 840–843. [44] A. Agarwal, F. Deepinder, R.K. Sharma, G. Ranga, J. Li, Effect of cell phone usage on semen analysis in men attending infertility clinic: an observational study, Fertil. Steril. 89 (2008) 124–128. [45] A. Wdowiak, L. Wdowiak, H. Wiktor, Evaluation of the effect of using mobile phones on male fertility, Ann. Agric. Environ. Med. 14 (1) (2007) 169–172. [46] J.G. Yan, A.M. Gresti, T. Bruce, Y.H. Yan, A. Granlund, H.S. Matloub, Effects of cellular phone emissions on sperm motility in rats, Fertil. Steril. 88 (4) (2007) 957–964. [47] P.F. Doherty, T.C. Grubb, Effects of high-voltage power lines on birds breeding within the powerlines’ electromagnetic fields, Sialia 18 (1996) 129–134. [48] V. Garaj-Vrhovac, D. Horvat, Z. Koren, The relationship between colony-forming ability, chromosome aberrations and incidence of micronuclei in V79 Chinese hamster cells exposed to microwave radiation, Mutat. Res. 263 (1991) 143–149. [49] H. Lai, N.P. Singh, Acute low-intensity microwave exposure increases DNA single-strand breaks in rat brain cells, Bioelectromagnetics 16 (1995) 207–210. [50] S. Balode, Assessment of radio-frequency electromagnetic radiation by the micronucleus test in bovine peripheral erythrocytes, Sci. Total Environ. 180 (1996) 81–85. [51] I. Belyaev, L. Hillert, E. Markova, R. Sarimov, L. Malmgren, B. Persson, M. Harms-Ringdahl, Microwaves of mobile phones affect human lymphocytes from normal and hypersensitive subjects dependent on frequency, in: 26th Annual Meeting of the Bioelectromagnetics (BEMS), Washington, USA, 2004. [52] G. Demsia, D. Vlastos, D.P. Matthopoulos, Effect of 910-MHz electromagnetic field on rat bone marrow, Sci. World J. 4 (2004) 48–54. [53] Reflex, 2004, . [54] E. Diem, C. Schwarz, F. Adlkofer, O. Jahn, H. Rudiger, Non-thermal DNA breakage by mobile-phone radiation (1800 MHz) in human fibroblasts and in transformed GFSH-R17 rat granulosa cells in vitro, Mut. Res. 583 (2005) 178–183. [55] A.G. Gandhi, P. Singh, Cytogenetic damage in mobile phone users: preliminary data, Int. J. Hum. Genet. 5 (2005) 259–265. [56] A. Di Carlo, N. Wite, F. Guo, P. Garrett, T. Litovitz, Chronic electromagnetic field exposure decreases HSP70 levels and lowers cytoprotection, J. Cell. Biochem. 84 (2002) 447–454. [57] D. Leszczynski, S. Joenväärä, J. Reivinen, R. Kuokka, Non-thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: molecular mechanism for cancer- and blood-brain barrier-related effects, Differentiation 70 (2002) 120–129. [58] E. Berman, L. Chacon, D. House, B.A. Koch, W.E. Koch, J. Leal, S. Lovtrup, E. Mantiply, A.H. Martin, G.I. Martucci, K.H. Mild, J.C. Monahan, M. Sandstrom, K. Shamsaifar, R. Tell, M.A. Trillo, A. Ubeda, P. Wagner, Development of chicken embryos in a pulsed magnetic field, Bioelectromagnetics 11 (1990) 169–187. [59] B.J. Youbicier-Simo, M. Bastide, Pathological effects induced by embryonic and postnatal exposure to EMFs radiation by cellular mobile phones, Radiat. Protect. 1 (1999) 218–223. [60] A. Úbeda, J. Leal, M.A. Trillo, M.A. Jimenez, J.M.R. Delgado, Pulse shape of magnetic fields influences chick embryogenesis, J. Anat. 137 (1983) 513–536. [61] J.M. Farrel, T.L. Litovitz, M. Penafiel, The effect of pulsed and sinusoidal magnetic fields on the morphology of developing chick embryos, Bioelectromagnetics 18 (1997) 431–438. [62] Ju.G. Grigoriew, Influence of the electromagnetic field of the mobile phones on chickens embryo, to the evaluation of the dangerousness after the criterion of this mortality, J. Radiat. Biol. 5 (2003) 541–544.
A. Balmori / Pathophysiology 16 (2009) 191–199 [82] A.Y. Rezk, K. Abdulqawi, R.M. Mustafa, T.M. Abo El-Azm, H. AlInany, Fetal and neonatal responses following maternal exposure to mobile phones, Saudi Med. J. 29 (2008) 218–223. [83] L.G. Salford, A.E. Brun, J.L. Eberhardt, L. Malmgren, B.R. Persson, Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones, Environ. Health Perspect. 111 (2003) 881–893. [84] D. Adang, B. Campo, A.V. Vorst, Has a 970 MHz Pulsed exposure an effect on the memory related behaviour of rats? in: The 9th European Conference onWireless Technology, September 2006, 2006, pp. [85] A.A. Kolodynski, V.V. Kolodynska, Motor and psychological functions of school children living in the area of the Skrunda Radio Location Station in Latvia, Sci. Total Environ. 180 (1996) 87–93. [86] H.A. Divan, L. Kheifets, C. Obel, J. Olsen, Prenatal and postnatal exposure to cell phone use and behavioral problems in children, Epidemiology 19 (2008) 523–529. [87] K. Mann, J. Roschkle, Effects of pulsed high-frequency electromagnetic fields on human sleep, Neuropsychobiology 33 (1996) 41–47. [88] A.V. Kramarenko, U. Tan, Effects of high-frequency electromagnetic fields on human EEG: a brain mapping study, Int. J. Neurosci. 113 (2003) 1007–1019. [89] A.A. Marino, E. Nilsen, C. Frilot, Nonlinear changes in brain electrical activity due to cell phone radiation, Bioelectromagnetics 24 (2003) 339–346. [90] A.R. Blaustein, P.T.J. Johnson, Explaining frog deformities, Sci. Am. 288 (2003) 60–65. [91] A. Balmori, The incidence of electromagnetic pollution on the amphibian decline: is this an important piece of the puzzle? Toxicol. Environ. Chem. 88 (2006) 287–299. [92] W.C. Levengood, A new teratogenic agent applied to amphibian embryos, J. Embryol. Exp. Morphol. 21 (1969) 23–31. [93] R.H. Landesman, W. Scott Douglas, Abnormal limb regeneration in adult newts exposed to a pulsed electromagnetic field, Teratology 42 (1990) 137–145. [94] N.M. Grefner, T.L. Yakovleva, I.K. Boreysha, Effects of electromagnetic radiation on tadpole development in the common frog (Rana temporaria L.), Russ. J. Ecol. 29 (1998) 133–134. [95] A. Balmori, in preparation: Phone masts effects on common frog (Rana temporaria) tadpoles: An experiment in the city. See the video clips in: http://www.hese-project.org/hese-uk/en/issues/nature. php?id=frogs. [96] U. Warnke, Bienen, vögel und menschen, Die Zerstörung der Natur durch “Elektrosmog”. Kompetenzinitiative, 2007 46 pp. [97] R.L. Carpenter, E.M. Livstone, Evidence for nonthermal effects of microwave radiation: Abnormal development of irradiated insect pupae, IEEE Trans. Microw. Theor. Tech. 19 (1971) 173–178.
199
[98] D. Weisbrot, H. Lin, L. Ye, M. Blank, R. Goodman, Effects of mobile phone radiation on reproduction and development in Drosophila melanogaster, J. Cell. Biochem. 89 (2003) 48–55. [99] D.J. Panagopoulos, A. Karabarbounis, L.H. Margaritis, Effect of GSM 900 MHz Mobile Phone Radiation on the Reproductive Capacity of Drosophila melanogaster, Electromagn. Biol. Med. 23 (2004) 29–43. [100] D.J. Panagopoulos, E.D. Chavdoula, A. Karabarbournis, L.H. Margaritis, Comparison of bioactivity between GSM 900 MHz and DCS 1800 MHz mobile telephony radiation, Electromagn. Biol. Med. 26 (2007) 33–44. [101] A. Balmori, Efectos de las radiaciones electromagnéticas de la telefonía móvil sobre los insectos, Ecosistemas (2006). [102] H. Stever, J. Kuhn, C.Otten, B.Wunder, W. Harst, Verhaltensanderung unter elektromagnetischer Exposition. Pilotstudie, Institut für mathematik. Arbeitsgruppe, Bildungsinformatik. Universität Koblenz-Landau, 2005. [103] V.G. Balodis, K. Brumelis, O. Kalviskis, D. Nikodemus, V.Z. y Tjarve, Does the Skrunda radio location station diminish the radial growth of pine trees? Sci. Total Environ. 180 (1996) 57–64. [104] T. Selga, M. Selga, Response of Pinus Sylvestris L. needles to electromagnetic fields. Cytological and ultraestructural aspects, Sci. Total Environ. 180 (1996) 65–73. [105] I. Magone, The effect of electromagnetic radiation from the Skrunda Radio Location Station on Spirodela polyrhiza (L.) Schleiden cultures, Sci. Total Environ. 180 (1996) 75–80. [106] D.D. Sandu, C. Goiceanu, A. Ispas, I. Creanga, S. Miclaus, D.E. Creanga, A preliminary study on ultra high frequency electromagnetic fields effect on black locust chlorophylls, Acta Biol. Hung. 56 (2005) 109–117. [107] D. Roux, Al. Vian, S. Girard, P. Bonnet, F. Paladian, E. Davies, G. Ledoigt, High frequency (900 MHz) low amplitude (5 V m−1 ) electromagnetic field: a genuine environmental stimulus that affects transcription, translation, calcium and energy charge in tomato, Planta 227 (2007) 883–891. [108] M. Tkalec, K. Malarik, B. Pevalek-Kozlina, Exposure to radiofrequency radiation induces oxidative stress in duckweed Lemna minor L., Sci. Total Environ. 388 (2007) 78–89. [109] A. Balmori, ¿Pueden afectar las microondas pulsadas emitidas por las antenas de telefonía a los árboles y otros vegetales? Ecosistemas (2004), http://www.revistaecosistemas.net/articulo.asp?Id= 29&Id Categoria=1&tipo=otros contenidos. [110] V. Schorpp, 2007, . [111] A. Balmori, Posibles efectos de las ondas electromagnéticas utilizadas en la telefonía inalámbrica sobre los seres vivos, Ardeola 51 (2004) 477–490.
Continue Reading

Please join StudyMode to read the full document

You May Also Find These Documents Helpful

  • Wildlife Essay
  • Wildlife Essay
  • Human Effect on Wildlife Essay
  • Wildlife Essay
  • Wildlife Essay
  • Wildlife Essay
  • Essay about Wildlife
  • Wildlife Essay

Become a StudyMode Member

Sign Up - It's Free