Earth Science

Topics: Cloud, Precipitation, Rain Pages: 17 (5662 words) Published: December 3, 2012
REVIEW Flood or Drought: How Do Aerosols Affect Precipitation? Daniel Rosenfeld,1* Ulrike Lohmann,2 Graciela B. Raga,3 Colin D. O’Dowd,4 Markku Kulmala,5 Sandro Fuzzi,6 Anni Reissell,5 Meinrat O. Andreae7 Aerosols serve as cloud condensation nuclei (CCN) and thus have a substantial effect on cloud properties and the initiation of precipitation. Large concentrations of human-made aerosols have been reported to both decrease and increase rainfall as a result of their radiative and CCN activities. At one extreme, pristine tropical clouds with low CCN concentrations rain out too quickly to mature into long-lived clouds. On the other hand, heavily polluted clouds evaporate much of their water before precipitation can occur, if they can form at all given the reduced surface heating resulting from the aerosol haze layer. We propose a conceptual model that explains this apparent dichotomy. loud physicists commonly classify the characteristics of aerosols and clouds into “maritime” and “continental” regimes, where “continental” has become synonymous with “aerosol-laden and polluted.” Indeed, aerosol concentrations in polluted air masses are typically one to two orders of magnitude greater than in pristine oceanic air (Fig. 1) (1). However, before humankind started to change the environment, aerosol concentrations were not much greater (up to double) over land than over the oceans (1, 2). Anthropogenic aerosols alter Earth’s energy budget by scattering and absorbing the solar radiation that energizes the formation of clouds (3–5). Because all cloud droplets must form on preexisting aerosol particles that act as cloud condensation nuclei (CCN), increased aerosols also change the composition of clouds (i.e., the size distribution of cloud droplets). This, in turn, determines to a large extent the precipitation-forming processes. Precipitation plays a key role in the climate system. About 37% of the energy input to the atmosphere occurs by release of latent heat from vapor that condenses into cloud drops and ice crystals (6). Reevaporation of clouds consumes back the released heat. When water is precipitated to the surface, this heat is left in the atmosphere and becomes available to energize convection and larger-scale atmospheric circulation systems. be available for evaporating water and energizing convective rain clouds (7). The fraction of radiation that is not reflected back to space by the aerosols is absorbed into the atmosphere, mainly by carbonaceous aerosols, leading to heating of the air above the surface. This stabilizes the low atmosphere and suppresses the generation of convective clouds (5). The warmer and drier air thus produces circulation systems that redistribute the remaining precipitation (8, 9). For example, elevated dry convection was observed to develop from the top of heavy smoke palls from burning oil wells (10). Warming of the lower troposphere by absorbing aerosols can also strengthen the Asian summer monsoon circulation and cause a local increase in precipitation, despite the global reduction of evaporation that compensates for greater radiative heating by aerosols (11). In the case of bright aerosols that mainly scatter the radiation back to space, the consequent surface cooling also can alter atmospheric circulation systems. It has been suggested that this mechanism has cooled the North Atlantic and hence pushed the Intertropical Convergence Zone southward, thereby contributing to the drying in the Sahel (12, 13). Aerosols also have important microphysical effects (14). Added CCN slow the conversion of cloud drops into raindrops by nucleating larger number concentrations of smaller drops, which are slower to coalesce into raindrops or rime onto ice hydrometeors (15, 16). This effect was shown to shut off precipitation from very shallow and short-lived clouds, as in the case of


The dominance of anthropogenic aerosols over much of the land area means that cloud composition, precipitation, the...

References: and Notes
1. M. O. Andreae, Atmos. Chem. Phys. Discuss. 8, 11293 (2008). 2. M. O. Andreae, Science 315, 50 (2007). 3. U. Lohmann, J. Feichter, Atmos. Chem. Phys. 5, 715 (2005). 4. V. Ramanathan et al., Proc. Natl. Acad. Sci. U.S.A. 102, 5326 (2005). 5. I. Koren, Y. J. Kaufman, L. A. Remer, J. V. Martins, Science 303, 1342 (2004). 6. D. Rosenfeld, Space Sci. Rev. 125, 149 (2006). 7. V. Ramanathan, P. J. Crutzen, J. T. Kiehl, D. Rosenfeld, Science 294, 2119 (2001). 8. S. Menon, J. Hansen, L. Nazarenko, Y. F. Luo, Science 297, 2250 (2002). 9. C. Wang, J. Geophys. Res. 109, D03106 (2004). 10. Y. Rudich, A. Sagi, D. Rosenfeld, J. Geophys. Res. 108, 10.1029/2003JD003472 (2003). 11. R. L. Miller, I. Tegen, J. Perlwitz, J. Geophys. Res. 109, D04203 (2004). 12. L. D. Rotstayn, U. Lohmann, J. Geophys. Res. 107, 10.1029/2002JD002128 (2002). 13. I. M. Held, T. L. Delworth, J. Lu, K. L. Findell, T. R. Knutson, Proc. Natl. Acad. Sci. U.S.A. 102, 17891 (2005). 14. W. Cotton, R. Pielke, Human Impacts on Weather and Climate (Cambridge Univ. Press, Cambridge, 2007). 15. R. Gunn, B. B. Phillips, J. Meteorol. 14, 272 (1957). 16. P. Squires, Tellus 10, 256 (1958). 17. L. F. Radke, J. A. Coakley Jr., M. D. King, Science 246, 1146 (1989). 18. National Research Council, Critical Issues in Weather Modification Research (National Academies Press, Washington, DC, 2003). 19. Z. Levin, W. Cotton, Aerosol Pollution Impact on Precipitation: A Scientific Review. Report from the WMO/IUGG International Aerosol Precipitation Science Assessment Group (IAPSAG) (World Meteorological Organization, Geneva, Switzerland, 2007). 20. D. Rosenfeld, Science 287, 1793 (2000). 21. D. Rosenfeld, Geophys. Res. Lett. 26, 3105 (1999). 22. D. Rosenfeld, W. L. Woodley, in Cloud Systems, Hurricanes, and the Tropical Rainfall Measuring Mission (TRMM), W.-K. Tao, R. Adler, Eds. (American Meteorological Society, Boston, 2003), pp. 59–80. 23. D. Rosenfeld, R. Lahav, A. Khain, M. Pinsky, Science 297, 1667 (2002); published online 15 August 2002 (10.1126/science.1073869). 24. Y. Rudich, O. Khersonsky, D. Rosenfeld, Geophys. Res. Lett. 29, 10.1029/2002GL016055 (2002). 25. National Research Council, Radiative Forcing of Climate Change: Expanding the Concept and Addressing Uncertainties (National Academies Press, Washington, DC, 2005). 26. D. Rosenfeld, Y. J. Kaufman, I. Koren, Atmos. Chem. Phys. 6, 2503 (2006). 27. D. Rosenfeld et al., J. Geophys. Res. 113, D15203 (2008). 28. M. O. Andreae et al., Science 303, 1337 (2004). 29. J. Molinié, C. A. Pontikis, Geophys. Res. Lett. 22, 1085 (1995). 30. E. Williams et al., J. Geophys. Res. 107, 10.1029/ 2001JD000380 (2002). 31. I. Koren, Y. J. Kaufman, D. Rosenfeld, L. A. Remer, Y. Rudich, Geophys. Res. Lett. 32, L14828 (2005). 32. J. C. Lin, T. Matsui, R. A. Pielke Sr., C. Kummerow, J. Geophys. Res. 111, D19204 (2006). 33. T. L. Bell et al., J. Geophys. Res. 113, D02209 (2008). 34. D. M. Schultz, S. Mikkonen, A. Laaksonen, M. B. Richman, Geophys. Res. Lett. 34, L22815 (2007). 35. T. Bell, D. Rosenfeld, Geophys. Res. Lett. 35, L09803 (2008). 36. A. Khain, A. Pokrovsky, M. Pinsky, A. Seifert, V. Phillips, J. Atmos. Sci. 61, 2963 (2004). 37. A. Khain, D. Rosenfeld, A. Pokrovsky, Q. J. R. Meteorol. Soc. 131, 2639 (2005). 38. B. H. Lynn et al., Mon. Weather Rev. 133, 59 (2005). 39. C. Wang, J. Geophys. Res. 110, D21211 (2005). 40. S. C. van den Heever, G. G. Carrió, W. R. Cotton, P. J. DeMott, A. J. Prenni, J. Atmos. Sci. 63, 1752 (2006). 41. A. Seifert, K. D. Beheng, Meteorol. Atmos. Phys. 92, 67 (2006). 42. A. Teller, Z. Levin, Atmos. Chem. Phys. 6, 67 (2006). 43. W. K. Tao et al., J. Geophys. Res. 112, D24S18 (2007). 44. D. B. Johnson, J. Atmos. Sci. 39, 448 (1982). 45. U. Lohmann, Atmos. Chem. Phys. 8, 2115 (2008). 46. E. R. Graber, Y. Rudich, Atmos. Chem. Phys. 6, 729 (2006). 47. V. T. J. Phillips, A. Pokrovsky, A. Khain, J. Atmos. Sci. 64, 338 (2007). 48. M. W. DeMaria, J. Atmos. Sci. 42, 1944 (1985). 49. D. Rosenfeld, W. L. Woodley, Nature 405, 440 (2000). 50. A. P. Khain, D. Rosenfeld, A. Pokrovsky, Geophys. Res. Lett. 28, 3887 (2001). 51. Z. Cui, K. S. Carslaw, Y. Yin, S. Davies, J. Geophys. Res. 111, D05201 (2006). 52. A. P. Khain, N. BenMoshe, A. Pokrovsky, J. Atmos. Sci. 65, 1721 (2008). 53. U. Dusek et al., Science 312, 1375 (2006). 54. E. Freud, D. Rosenfeld, M. O. Andreae, A. A. Costa, P. Artaxo, Atmos. Chem. Phys. 8, 1661 (2008). 55. M. C. VanZanten, B. Stevens, G. Vali, D. H. Lenschow, J. Atmos. Sci. 62, 88 (2005). 56. M. Wild et al., Science 308, 847 (2005). 57. D. G. Streets, Y. Wu, M. Chin, Geophys. Res. Lett. 33, L15806 (2006). 58. The term “thermodynamic aerosol effect” was first mentioned in (25), but in a more restrictive context. 59. I. Koren, J. V. Martins, L. A. Remer, H. Afargan, Science 321, 946 (2008). 60. B. Stevens, iLEAPS Newsletter 5, 10 (2008). 61. The Aerosol Cloud Precipitation Climate (ACPC) initiative is a joint initiative by the International Geosphere/Biosphere Programme (IGBP) core projects Integrated Land Ecosystem/Atmosphere Process Study (iLEAPS) and International Global Atmospheric Chemistry (IGAC) and the World Climate Research Programme (WCRP) project Global Energy and Water Cycle Experiment (GEWEX). 62. This paper resulted from discussions held during an ACPC workshop hosted and supported by the International Space Science Institute, Bern, Switzerland, through its International Teams Program. 10.1126/science.1160606
VOL 321
Downloaded from on September 9, 2008
Continue Reading

Please join StudyMode to read the full document

You May Also Find These Documents Helpful

  • science study guide Essay
  • Problems Face by Earth Essay
  • Earth Science Research Paper
  • The Three Cycles- Science Essay
  • Earth Science Essay
  • Atmosphere Project Essay
  • test practice Essay
  • Earth Science Syllabus Essay

Become a StudyMode Member

Sign Up - It's Free