Cellular Respiration

Good Essays
Abstract
The effect of nature of substrates on the rate of cellular respiration in yeast was determined by using the Smith fermentation tube method. Mixtures of 15ml distilled H2O, 10% yeast suspension and 15ml of the following solutions (all at 10% concentration):1- starch, 2 – lactose, 3 – sucrose, 4 – glucose, 5 – fructose, 6 – distilled water , were poured in six smith fermentation tubes. Cotton balls were plugged in the openings of the tubes and the tubes were kept upright and observed for 30 minutes. The mixture with the sucrose solution acquired the highest computed volume of gas evolved and the rate of CO2 evolution seconded by glucose and followed by fructose. This stated that the higher the amount of the CO2 evolved, the faster the rate of respiration. Mixtures with lactose, starch and dH2O solutions obtained zero result for the volume of gas evolved and rate of CO2 evolution. Thus, the nature of subtrate used slows down or fastens the rate of cellular respiration.

Introduction
Cellular respiration is defined as an enzyme mediated process in which organic compounds such as glucose is broken down into simpler products with the release of energy (Duka, Diaz and Villa, 2009). It is a series of metabolic processes and oxidation-reduction reactions. Oxidation of substrates, such as glucose, is a fundamental part of cellular respiration (Mader, 2009). As a catabolic process, it may or may not require the presence of oxygen. The process that requires oxygen is called aerobic respiration while the process that does not require the presence of oxygen is called anaerobic respiration. (Duka, et.al. 2007)
Despite of its low yield of only two ATP (energy used by the cells to perform its duties), anaerobic respiration is essential because it continuously synthesizes ATP albeit oxygen is temporarily in short supply.
Although anaerobic respiration synthesizes a low yield of ATP (which is the energy used by the cell enables it to perform its duties), it is

You May Also Find These Documents Helpful

  • Better Essays

    Cellular respiration includes the processes of glycolysis, krebs cycle, and the electron transport chain. Glycolysis is used to convert glucose to produce two pyruvate as well as 4 ATP’s and 2 NADH but uses 2 ATP to have a net product of 2 ATP and 2 NADH. The krebs cycle converts pyruvate to Acetyl CoA, which produces 2 ATP,8 NADH, and 2 FADH’s per glucose molecule. Electron transport Chain is the last and most important step of cellular respiration, it makes ATP with the movement of electrons from high energy to low energy that makes a proton gradient which makes ATP, this cannot occur unless oxygen is present. Fermentation is an anaerobic process in which converts sugars into acids, alcohol, or alcohol. This process occurs in yeast and bacteria as well as muscle cells that have no oxygen left. In yeast fermentation produces ethyl alcohol and carbon dioxide from glucose and fructose. Fermentation in bacteria cells the process of fermentation produces ethanol, while in human muscle cells fermentation produces lactic acid in cells that have a short…

    • 1719 Words
    • 7 Pages
    Better Essays
  • Powerful Essays

    Lab 5 Cellular Respiration

    • 3401 Words
    • 14 Pages

    breaking down apyruvate derivative (Acetyl-CoA) into carbon dioxide. These two cycles both produce a small…

    • 3401 Words
    • 14 Pages
    Powerful Essays
  • Good Essays

    The creation and distribution of ATP is vital to humans and their survival on earth simply because ATP is the energy bodies use in order to continue the tasks they need to keep the human body functioning. The overall goal of cellular respiration is to create ATP. In doing so, there…

    • 594 Words
    • 3 Pages
    Good Essays
  • Good Essays

    Process by which plants and some other organisms use light energy to convert water and carbon dioxide into oxygen and high-energy carbohydrates such as sugars and starches…

    • 2022 Words
    • 9 Pages
    Good Essays
  • Powerful Essays

    To be able to carry on metabolic processes in the cell, cells need energy. The cells can obtain their energy in different ways but the most efficient way of harvesting stored food in the cell is through cellular respiration. Cellular respiration is a catabolic pathway, which breaks down large molecules to smaller molecules, produces an energy rich molecule known as ATP (Adenosine Triphosphate) and a waste product that is released as CO2. Basically, cellular respiration is a metabolic process that releases energy from organic compounds (such as C6H12O6) by metabolic chemical oxidation in the mitochondria within each cell. Proteins, carbohydrates, and fats can all be broken down into fuel for the cell but cellular respiration is usually correlated with glucose. Cellular respiration also requires O2 to carry out its pathway, as oxygen will act as a final electron acceptor. So, the final equation that can be represented for Cellular Respiration is: C6H12O6 + 6 O2 → 6 CO2 + 6 H2O + heat.…

    • 1940 Words
    • 8 Pages
    Powerful Essays
  • Powerful Essays

    Mitochondria are membrane-enclosed organelles distributed through the cytosol of most eukaryotic cells. Their number within the cell ranges from a few hundred to, in very active cells, thousands. Their main function is the conversion of the potential energy of food molecules into ATP.…

    • 1732 Words
    • 7 Pages
    Powerful Essays
  • Powerful Essays

    We can also see the differences in cellular respiration between germinating and non-germinating peas. In our lab the main error made was that I accidentally bumped the chilled water tray, moving the respirometers equilibrating inside the tray, therefore resulting in botched results.…

    • 1577 Words
    • 7 Pages
    Powerful Essays
  • Good Essays

    Catabolism (Aerobic Metabolism) occurs when there is plentiful supply of glucose and oxygen for the cells to use for cellular respiration (Aerobic Respiration happens eventually with the mitochondria in the cells producing A.T.P-Adenosine Triphosphate).…

    • 460 Words
    • 2 Pages
    Good Essays
  • Good Essays

    Cells in the body use ATP as a direct source of energy. The conversion of glucose into ATP takes place during respiration. There are 2 different types of respiration, the more common and frequent one is aerobic respiration which is the production of ATP for energy. The less common one is anaerobic respiration, the production of lactate during which the muscles have a limited supply of oxygen, and however keep working despite this.…

    • 1000 Words
    • 4 Pages
    Good Essays
  • Good Essays

    17) Most eukaryotic cells produce fewer than 38 ATP molecules for every glucose molecule that is oxidized by aerobic respiration is because the NADH that is made in the cytosol during glycolysis cannot diffuse through the inner membrane of the mitochondrion, it must be transported into the mitochondrial matrix. So as a result the active transport of NADH consumes ATP releasing only 36 ATP molecules.…

    • 610 Words
    • 3 Pages
    Good Essays
  • Satisfactory Essays

    Photosynthesis is the process by which plants, some bacteria, and some protistans use the energy from sunlight to produce sugar, which cellular respiration converts into ATP, the "fuel" used by all living things. The conversion of unusable sunlight energy into usable chemical energy, is associated with the actions of the green pigment chlorophyll. Most of the time, the photosynthetic process uses water and releases the oxygen.…

    • 324 Words
    • 2 Pages
    Satisfactory Essays
  • Good Essays

    1 Two critical ingredients required for cellular respiration are glucose and oxygen. Cellular Respiration, process in which cells produce the energy they need to survive. In cellular respiration, cells use oxygen to break down the sugar glucose and store its energy in molecules of adenosine triphosphate (ATP). Cellular respiration is critical for the survival of most organisms because the energy in glucose cannot be used by cells until it is stored in ATP. Cells use ATP to power virtually all of their activities—to grow, divide, replace worn out cell parts, and execute many other tasks. Cellular respiration provides the energy required for an amoeba to glide toward food, the Venus fly trap to capture its prey, or the ballet dancer to execute…

    • 354 Words
    • 2 Pages
    Good Essays
  • Good Essays

    Respirationlabbackground

    • 733 Words
    • 2 Pages

    Aerobic cellular respiration is a pivotal process in which organisms carry out in order to sustain life. It is characterized by the release of energy from organic compounds by means of chemical oxidation within the mitochondria of the cell. The reactants are glucose and oxygen, and after a series of complex steps, the products of carbon dioxide, water, and ATP + heat are released. Thus, cellular respiration is an exergonic process, since heat energy is released in order to do cellular work. The overall process can be encapsulated by the following equation: C6H12O6 + CO2 6CO2+ 6H2O+ 586 kilocalories of energy/mole of glucose oxidized. This reaction seems very straightforward, however there are numerous enzyme-mediated reactions that occur within it that are not so perceptible from the simplified equation. Cellular respiration consists of three major stages: The first is Glycolysis; (occurring in the cytosol) in which chemical energy is harvested by oxidizing glucose into two 3 carbon molecules of pyruvate, and thus producing a net of 2 ATP molecules through substrate-level phosphorylation, as well as a net of 2 NADH molecules. Subsequently, the Krebs Cycle commences after 2 pyruvate molecules are converted to 2 Acetyl CoA molecules in the intermembrane space of the mitochondria. During the Krebs Cycle (occurring in the mitochondrial matrix)4 CO2 molecules are released, 1 ATP molecule is formed (for each turn of the cycle), and the reduced forms of 6 NADH and 2 FADH carry the electrons to the next step: the Electron Transport Chain. This occurs in the inner membrane of the mitochondria, and consists of many electron carriers that pass electrons (donated by NADH and FADH2) along through a series of redox reactions. At the end of the chain, oxygen acts as a final electron acceptor and it reduced them to form water. A proton motive force, or H+ gradient,…

    • 733 Words
    • 2 Pages
    Good Essays
  • Good Essays

    Cellular Respiration Lab

    • 452 Words
    • 2 Pages

    The two types of fermentation that are well known are alcoholic fermentation as well as lactic acid fermentation. Fermentation is vital for many organisms, such as yeast and bacteria, because it allows them to obtain energy required to carry on life processes. Alcoholic fermentation is especially important for human beings, as it is used to produce alcoholic beverages, bread, and many other everyday items that are consumed (Alba-Lois, 2010). On the other hand, lactic acid is a waste product of certain bacteria (Lactobacillales), which is utilized to create many dairy products such as yogurt and cheese. In addition, humans can resort to lactic acid fermentation when oxygen is limited, so it is used as an extra source to obtain oxygen. In our experiment we will be using yeast, a single-celled organism that utilizes sugar as a food source, and it produces energy substances through the breakdown of sugar molecules. Specifically, the type of sugar as a source of food, impacts the speed of fermentation in yeast. In this lab, we will calculate the rate of fermentation in yeast with different solutions of sugar, such as sucrose, fructose, and lactose with glucose being the control. It is important to humans that the yeast uses the best sugar source during fermentation, as it creates important everyday items we consume like bread, alcohol, and…

    • 452 Words
    • 2 Pages
    Good Essays
  • Good Essays

    1. The overall equation for Cellular Respiration is 6O2 + C6H12O6 6H2O + 6CO2 +…

    • 516 Words
    • 3 Pages
    Good Essays