Preview

Bending Moment

Satisfactory Essays
Open Document
Open Document
702 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Bending Moment
CHAPTER 4:
INFLUENCE LINE OF DETERMINATE BEAM AND FRAMEWORK

Objective:
1. To Sketch diagram of influence line for reactions, shear force and moment for:
a. Simply supported beam
b. Simply supported beam with one end overhanging
c. Simply supported beam with both ends overhanging.

2. To calculate shear force and moment using influence line
3. To determine maximum shear force and moment
4. Calculate Absolute Maximum Moment (MMM)

4.1 INTRODUCTIONS:

Influence line is to:
Analysis a structure due to moving load along the beam.
Show the changes in reaction, shear stress, moment and displacement in certain point in structure when applied a unit load.
Determine the greatest position the greatest value of live load in beam.

4.2 DIFFERENCES BETWEEN INFLUENCE LINE DIAGRAM (ILD) AND BMD (BENDING MOMENT DIAGRAM)

INFLUENCE LINE DIAGRAM
(ILD)
BENDING MOMENT DIAGRAM (BMD)
a) Static and Moving Load
b) Diagrams show only one point on the beam.

c) Calculations based on the virtual load.
d) Straight line only
e) Calculations do not refer to reactions of beam.
f) Unit: m
a) Static load only.
b) Diagram shows the moment at all points on the beam.
c) Calculations based on real loads.
d) Straight lines and curves.
e) Calculations based on the SFD.

f) Unit : kNm

4.3 BASIC CONCEPT TO DRAW INFLUENCE LINE DIAGRAM (ILD)

1 unit x A B C

a b

RAY = [L-x]/L 1-x/L RCY=x/L

4.3.1 REACTION

ILD RAY L/L

b/L [+] 0

ILD RCY L/L a/L

1 [+]

4.3.2 SHEAR FORCE OF BEAM

ILD Vc b/L

[+]

[-]

a/L

4.3.3 BENDING MOMENT OF BEAM

ILD Mc 0 0
[+]

ab/L
EXAMPLE 1: SIMPLY SUPPORTED BEAM
Draw Influence Line Diagram for reaction at A and B, Shear force and bending moment for the beam. 1 unit x A C B

7.5m 2.5m

RAY = [L-x]/L 10m RBY=x/L =1-x/L

EXAMPLE 2: SIMPLY SUPPORTED BEAM WITH

You May Also Find These Documents Helpful

  • Satisfactory Essays

    1. Determine the magnitude of the reactions on the beam at A and B in Fig. 1. Neglect the thickness of the beam. (5-11). 2. Determine the tension in the cable and the horizontal and vertical components of reaction of the pin A in Fig. 2. The pulley at D is frictionless and the cylinder weighs 80 lb. (5-18)…

    • 262 Words
    • 2 Pages
    Satisfactory Essays
  • Powerful Essays

    EGR 315 Final Paper

    • 2079 Words
    • 9 Pages

    The shear stress distributing in a beam depends on how Q/b varies as a function of y1. For a beam with a rectangular cross sectional area, subjected to a shear force V and a bending moment M. as a result of the bending moment a normal stress is developed on a cross section, which is compression above the neutral axis and it is tension below the neutral axis. To investigate the shear stress at a distance y1 above the neutral axis. Then dA=bdy, so equation 2 becomes…

    • 2079 Words
    • 9 Pages
    Powerful Essays
  • Satisfactory Essays

    Ib 270 Research Paper

    • 723 Words
    • 3 Pages

    Description: You will solve problems related to key concepts in engineering mechanics of materials covered over the semester.…

    • 723 Words
    • 3 Pages
    Satisfactory Essays
  • Good Essays

    Bone Mechanics

    • 504 Words
    • 7 Pages

    In this lab the strain response of two different materials were measured as stress was applied to them. The materials were an aluminum rod and a chicken bone. Strain (ᵋ) is the change of length of the material over the initial length.…

    • 504 Words
    • 7 Pages
    Good Essays
  • Powerful Essays

    3. The values of the principal second moments of area of the section by experiment and by theoretical calculations.…

    • 1440 Words
    • 16 Pages
    Powerful Essays
  • Powerful Essays

    A tensile test was performed on a 4140 steel sample and the axial and transverse strains were measured. Data points were collected at incremental loads and graphed to determine the elastic modulus (30.4 x 106). Poisson’s ratio was also calculated from the dataset and determined to be 0.29. These experimental values agree closely (within 2%) to the textbook values of the steel sample. A sample of 7075 Aluminum was used in a cantilever beam test. Intermediate and end loads were place on the sample and the strain was measured at various distances from the loads. Using the dataset from the individual loads, the superposition strain was calculated and agreed within 7% of the experimental strain with both loads. From the measured deflection of the cantilever beam and the dataset, Young’s Modulus for the aluminum sample was determined to be 9.1x106 psi which agrees within 8% of the textbook value.…

    • 4723 Words
    • 19 Pages
    Powerful Essays
  • Satisfactory Essays

    The objective of this lab is to determine a set of changes due to the stress in geometric irregularities in an axially loaded bar. Some of the irregularities include certain features such as holes and notches.…

    • 590 Words
    • 3 Pages
    Satisfactory Essays
  • Satisfactory Essays

    18. A cylindrical specimen of aluminum having a diameter of 12mm and a gauge length of 50 mm is pulled in tension. Use the load–elongation characteristics in Table 2 Plot the data as engineering stress versus engineering strain and Compute the modulus of elasticity, yield strength at a strain offset of 0.002,tensile strength of this alloy, modulus of resilience and ductility in terms of percent elongation.…

    • 607 Words
    • 3 Pages
    Satisfactory Essays
  • Powerful Essays

    An investigation into beam bending and superposition. Being able to analyse how beams bend is an essential tool for all engineers. By using mathematics and material properties, engineers are able to compute structural deformation thus verifying a structures fitness for use. In this experiment a simply supported beam of aluminium is loaded with point forces in three different cases. A clock gauge is positioned in the middle of the beam to measure the deflection. The results of a complex arrangement of forces can be deduced by the superposition of more simple cases. Superposition is possible only when the response of the structure is linear, e.g. when deflection is directly proportional to the applied load. Also the experimental and theoretical deflections of the beam will be compared and a percentage error obtained. There was a second test performed in this investigation demonstrating the influence the 2nd moment of area, also known as the second moment of inertia, had on the load carrying capacity of the beam. The results from test 1 show that it is possible to deduce the deflection of the beam when loaded with point forces by superposition. Results from test 2 show that the deflection of a beam is influenced greatly by its moment of inertia, i.e. with a greater value of inertia there is a smaller deflection.…

    • 2138 Words
    • 9 Pages
    Powerful Essays
  • Satisfactory Essays

    Bending Bridges

    • 351 Words
    • 2 Pages

    Aim: To find out how weight and different placements of the weight affect the bending of the beam.…

    • 351 Words
    • 2 Pages
    Satisfactory Essays
  • Satisfactory Essays

    Solid Mechanic

    • 2276 Words
    • 10 Pages

      To determine the deformation of axially loaded members. To determine the support reactions when these reactions cannot be determined solely from the equations of equilibrium. To analyze the effects of thermal stresses.…

    • 2276 Words
    • 10 Pages
    Satisfactory Essays
  • Satisfactory Essays

    PE  2 EI Pcr  2  K ( KL)2 K : effective length factor…

    • 1811 Words
    • 8 Pages
    Satisfactory Essays
  • Good Essays

    Ders

    • 939 Words
    • 4 Pages

    The solid rod shown in the figure has a radius of 15 mm. If it is subjected to the loading shown, determine the principal stresses at the point B (Show the stresses on 3D elements at the point B).…

    • 939 Words
    • 4 Pages
    Good Essays
  • Good Essays

    Deflection

    • 516 Words
    • 3 Pages

    Derive the equations for slope and deflection for the beam shown. Determine the slope at each support and value of deflection at mid span. Hint: Take advantage of symmetry; slope is zero at midspan.…

    • 516 Words
    • 3 Pages
    Good Essays
  • Satisfactory Essays

    Beam Experiment

    • 890 Words
    • 4 Pages

    To determine the reactions of the beams by (a) the experimental set-up and (b) by using the principles of statics and method of consistent deformation…

    • 890 Words
    • 4 Pages
    Satisfactory Essays