A Technical Analysis of Ergonomics and Human Factors in Modern Flight

Only available on StudyMode
  • Topic: Design, Design management, Usability
  • Pages : 12 (4088 words )
  • Download(s) : 73
  • Published : October 8, 1999
Open Document
Text Preview
A Technical Analysis of Ergonomics and Human Factors in Modern Flight Deck Design

I. Introduction
Since the dawn of the aviation era, cockpit design has become increasingly complicated owing to the advent of new technologies enabling aircraft to fly farther and faster more efficiently than ever before. With greater workloads imposed on pilots as fleets modernize, the reality of he or she exceeding the workload limit has become manifest. Because of the unpredictable nature of man, this problem is impossible to eliminate completely. However, the instances of occurrence can be drastically reduced by examining the nature of man, how he operates in the cockpit, and what must be done by engineers to design a system in which man and machine are ideally interfaced. The latter point involves an in-depth analysis of system design with an emphasis on human factors, biomechanics, cockpit controls, and display systems. By analyzing these components of cockpit design, and determining which variables of each will yield the lowest errors, a system can be designed in which the Liveware-Hardware interface can promote safety and reduce mishap frequency.

II. The History Of Human Factors in Cockpit Design
The history of cockpit design can be traced as far back as the first balloon flights, where a barometer was used to measure altitude. The Wright brothers incorporated a string attached to the aircraft to indicate slips and skids (Hawkins, 241). However, the first real efforts towards human factors implementation in cockpit design began in the early 1930's. During this time, the United States Postal Service began flying aircraft in all-weather missions (Kane, 4:9). The greater reliance on instrumentation raised the question of where to put each display and control. However, not much attention was being focused on this area as engineers cared more about getting the instrument in the cockpit, than about how it would interface with the pilot (Sanders & McCormick, 739).

In the mid- to late 1930's, the development of the first gyroscopic instruments forced engineers to make their first major human factors-related decision. Rudimentary situation indicators raised concern about whether the displays should reflect the view as seen from inside the cockpit, having the horizon move behind a fixed miniature airplane, or as it would be seen from outside the aircraft. Until the end of World War I, aircraft were manufactured using both types of display. This caused confusion among pilots who were familiar with one type of display and were flying an aircraft with the other. Several safety violations were observed because of this, none of which were fatal (Fitts, 20-21).

Shortly after World War II, aircraft cockpits were standardized to the ‘ six-pack' configuration. This was a collection of the six critical flight instruments arranged in two rows of three directly in front of the pilot. In clockwise order from the upper left, they were the airspeed indicator, artificial horizon, altimeter, turn coordinator, heading indicator and vertical speed indicator. This arrangement of instruments provided easy transition training for pilots going from one aircraft to another. In addition, instrument scanning was enhanced, because the instruments were strategically placed so the pilot could reference each instrument against the artificial horizon in a hub and spoke method (Fitts, 26-30).

Since then, the bulk of human interfacing with cockpit development has been largely due to technological achievements. The dramatic increase in the complexity of aircraft after the dawn of the jet age brought with it a greater need than ever for automation that exceeded a simple autopilot. Human factors studies in other industries, and within the military paved the way for some of the most recent technological innovations such as the glass cockpit, Heads Up Display (HUD), and other advanced panel displays. Although these systems are on the cutting...
tracking img