Preview

Young's Modulus of Aluminium Beam

Powerful Essays
Open Document
Open Document
1117 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Young's Modulus of Aluminium Beam
Solid Mechanics Lab Report
Experiment to determine the Young’s modulus of an aluminium cantilever beam and the uncertainties in its measurement
1. Abstarct: The young’s modulus E, is a measure of the stiffness and is therefore one of the most important properties in engineering design. It is a materials ratio between stress and strain:
E=σε
Young’s modulus is a unique value for each material and indicates the strength of that material as well as how it will deform when a load is applied.

2. Introduction: The Young’s Modulus can only be derived experimentally, there are no theoretical methods by which the young’s Modulus of a material can be calculated therefore in this experiment our aims were: * To calculate the Young’s modulus ,E of Aluminium from measurement of the end deflection of cantilever beam of aluminium loaded at its free end * To assess the accuracy and precision of this method by comparing the calculated value of E to the known value Eal=72.6 GPa * To measure the deflected shape of the aluminium beam for one loading condition (15N) and to compare this with the theoretical prediction of the beam bending theory for deflection of a cantilever

yx= PL32EIxL2-13xL3

3. Materials and Methods
The apparatus shown below was set up and the following equipments were used: * Dial gauge was used to measure deflection of the beam * Magnetic clamp stand (not to affect the bending of the beam) * Solid Aluminium Beam * 15 Weights(1N each) * Clamp to keep it still at one end. * Steel base

4.Results 1. Load/Deflection behaviour :Equation to calculate the young’s Modulus from the slope of deflection vs. load graph E= 4L3bd3(slope)

We measured the length (L) the width (d) and the breadth (b) of the beam 5 times and then calculated the average: Average Length/mm | Average width/mm | Average breadth/mm | 998 | 25.28 | 15.73 |

The uncertainties of the slope, length, breadth and width were estimated using



References: The equations were obtained from the HSDM Solid Mechanics Laboratories Booklet & Solid Mechanics lecture notes The uncertainties information and methods from “Experimental Methods” by Les Kirkup

You May Also Find These Documents Helpful

  • Better Essays

    AM 317 Experiment 1

    • 1994 Words
    • 14 Pages

    Deflections of a beam are important to be able predict the amount of deflection for a given loading situation. This experiment addresses determining the yield point for a material to fail, so the stress in the material does not have to reach to that point. This is where understanding beam deflection becomes a useful tool. This experiment is using beam deflection theory to evaluate and compare observed deflection per load values to theoretical values. Beam deflection experiment done by four parts. Part 1 -Simple Supported Bean, part 2-Cantilever Beam, part 3-The Principle of Superposition, and Part 4-Maxwell’s Reciprocity Theorem. For part 1 and 2 beam dimensions were recorded and are moment of inertia (I) was calculated using the following formula I=bh3/12.for part1, maximum permissible loads for mid-span and quarter-span were calculated. For part 2 maximum permissible loads for mid-span and end of the cantilever beam were calculated. For both parts different loads were applied and deflections were recorded. After calculating average modulus of elasticity for simple supported beam, which was approximately (-27.6*10^6 psi), it was compared to modulus of elasticity chart. The result indicates that the beam simple supported beam was made of Wrought iron. For cantilever beam, average modulus of elasticity were calculated, which was approximately (9148056.3), and compared with young’s modulus chart .the result indicate that cantilever beam was made of Aluminum. Part 3 reference point was chosen, single concentrated load at other point was applied and deflection was recorded at reference point. Same procedure was applied at another point on the beam and deflection was recorded at reference point. Finally, both loads were applied and deflection was recorded at the…

    • 1994 Words
    • 14 Pages
    Better Essays
  • Satisfactory Essays

    Solid Mechanic

    • 2276 Words
    • 10 Pages

      To determine the deformation of axially loaded members. To determine the support reactions when these reactions cannot be determined solely from the equations of equilibrium. To analyze the effects of thermal stresses.…

    • 2276 Words
    • 10 Pages
    Satisfactory Essays
  • Powerful Essays

    There were 2 different experiment was conducted to observe the bending moment. The first experiment, Experiment 1, is to observe the bending moment at a given point using different set of weight and also to calculate the percentage error between the experimental value of the bending moment and the theoretical value of the bending moment. In second experiment, Experiment 2, the purpose is to observe how the bending moment varies at the cut when different loading conditions on the simply supported beam.…

    • 1818 Words
    • 7 Pages
    Powerful Essays
  • Satisfactory Essays

    Lab report Experiment AM1

    • 246 Words
    • 2 Pages

    The Experimental Bending moment was obtained by multiply the displayed force and perpendicular distance between load cell and the “cut” (moment arm) and the perpendicular distance between load cell and the “cut” is 0.125m throughout the experiment.…

    • 246 Words
    • 2 Pages
    Satisfactory Essays
  • Better Essays

    “Beams are long straight members that are subjected to loads perpendicular to their longitudinal axis and are classified according to the way they are supported”[1]. When a beam is subjected to an external load there are unseen internal forces within the beam that one must be aware of when implementing it into any design or structure. These internal forces create stress and strain that could result in failure or deformation. This lab looked at how an aluminum cantilevered beam performed under symmetric and unsymmetrical bending as well as the stresses and strains developed as a result.…

    • 1242 Words
    • 5 Pages
    Better Essays
  • Powerful Essays

    Experiment Two: Stiffness Report from laboratory work performed on 12 May 2011 as a part of the unit of study CIVL2201 Structural Mechanics…

    • 2020 Words
    • 9 Pages
    Powerful Essays
  • Powerful Essays

    The experiment was conducted to investigate the deflections of the tip of a cantilever when loaded transversely in directions not coinciding with the principal axes of the cross section, and also to determine:…

    • 1440 Words
    • 16 Pages
    Powerful Essays
  • Satisfactory Essays

    Bending Bridges

    • 351 Words
    • 2 Pages

    Aim: To find out how weight and different placements of the weight affect the bending of the beam.…

    • 351 Words
    • 2 Pages
    Satisfactory Essays
  • Better Essays

    Steel 1045 Final Report

    • 1478 Words
    • 6 Pages

    The published values for the mild steel specimen are, Modulus of elasticity = 200GPa (AZO Materials 2013a), Yield Strength = 250MPa (AZO Materials 2013a), Tensile Strength= 400-550MPa (AZO Materials 2013a), Ductility based on elongation=23%( AZO Materials 2013a), and ductility based on area of reduction = 15% (AZO Materials 2013a). A published value on the modulus of resilience could not be located.…

    • 1478 Words
    • 6 Pages
    Better Essays
  • Satisfactory Essays

    18. A cylindrical specimen of aluminum having a diameter of 12mm and a gauge length of 50 mm is pulled in tension. Use the load–elongation characteristics in Table 2 Plot the data as engineering stress versus engineering strain and Compute the modulus of elasticity, yield strength at a strain offset of 0.002,tensile strength of this alloy, modulus of resilience and ductility in terms of percent elongation.…

    • 607 Words
    • 3 Pages
    Satisfactory Essays
  • Powerful Essays

    In this experiment the main aim was to modelling a frame subjected to multiple loading conditions and record how the force and strain vary to different loads. The frame represented a simple roof trusses and the loading conditions are similar to what a typical roof would undergo. In this experiment a universal fame was used with load cells to provide the load and digital force and strain instruments to record the data. As the load was increased the strain went up linear showing a linear relationship between loading and strain. After analysing results it was found that the results for experimental forces compared to theoretical forces were very close showing that this experiment was very accurate, with very small uncertainty, the reason for this is due to very sensitive equipment as a change of 1µϵ is equivalent to change of 6 N (using young’s modulus) and other factors described in detail in the report.…

    • 1337 Words
    • 39 Pages
    Powerful Essays
  • Good Essays

    College Physics

    • 6022 Words
    • 25 Pages

    MC The volume stress for the bulk modulus is (a) [pic] (b) [pic] (c) [pic] (d) [pic] (a)…

    • 6022 Words
    • 25 Pages
    Good Essays
  • Satisfactory Essays

    Beam Experiment

    • 890 Words
    • 4 Pages

    To determine the reactions of the beams by (a) the experimental set-up and (b) by using the principles of statics and method of consistent deformation…

    • 890 Words
    • 4 Pages
    Satisfactory Essays
  • Powerful Essays

    An investigation into beam bending and superposition. Being able to analyse how beams bend is an essential tool for all engineers. By using mathematics and material properties, engineers are able to compute structural deformation thus verifying a structures fitness for use. In this experiment a simply supported beam of aluminium is loaded with point forces in three different cases. A clock gauge is positioned in the middle of the beam to measure the deflection. The results of a complex arrangement of forces can be deduced by the superposition of more simple cases. Superposition is possible only when the response of the structure is linear, e.g. when deflection is directly proportional to the applied load. Also the experimental and theoretical deflections of the beam will be compared and a percentage error obtained. There was a second test performed in this investigation demonstrating the influence the 2nd moment of area, also known as the second moment of inertia, had on the load carrying capacity of the beam. The results from test 1 show that it is possible to deduce the deflection of the beam when loaded with point forces by superposition. Results from test 2 show that the deflection of a beam is influenced greatly by its moment of inertia, i.e. with a greater value of inertia there is a smaller deflection.…

    • 2138 Words
    • 9 Pages
    Powerful Essays
  • Better Essays

    Dedlection

    • 2185 Words
    • 9 Pages

    In this experiment, we were needed to find the deflection of Ring, Semicircle and quadrant made from the curved beam. The experiment is carry out by applied these beam with a load that weight 5N for circle and 2N for Semicircle and Quadrat. For the ring shape, the load is added 5N contiuosly until the load 40N and the dial reading is note down every time the load is added. Similar step is repeated using Semicircle and Quadrant that is we add 2N load continuously until 14N and take the dial reading.…

    • 2185 Words
    • 9 Pages
    Better Essays

Related Topics