# Wireless Energy Transfer

Topics: Electromagnetism, Electricity, Transformer Pages: 8 (2775 words) Published: November 10, 2011
Wireless energy transfer or wireless power is the transmission of electrical energy from a power source to an electrical load without artificial interconnecting conductors. Wireless transmission is useful in cases where interconnecting wires are inconvenient, hazardous, or impossible.  The most common form of wireless power transmission is carried out using direct induction followed by resonant magnetic induction. Other methods under consideration include electromagnetic radiation in the form of microwaves or lasers.

Energy transfer and efficiency
The general principle is that if a given oscillating amount of energy (for example alternating current from a wall outlet) is placed into a primary coil which is capacitively loaded, the coil will 'ring', and form an oscillating magnetic field. The energy will transfer back and forth between the magnetic field in the inductor and the electric field across the capacitor at the resonant frequency. This oscillation will die away at a rate determined by the Q factor, mainly due to resistive and radiative losses. However, provided the secondary coil cuts enough of the field that it absorbs more energy than is lost in each cycle of the primary, then most of the energy can still be transferred.

-------------------------------------------------
Electric energy transfer
An electric current flowing through a conductor carries electrical energy.  When an electric current passes through a circuit there is an electric field in the dielectric surrounding the conductor; magnetic field lines around the conductor and lines of electric force radially about the conductor.[3] In a direct current circuit, if the current is continuous, the fields are constant; there is a condition of stress in the space surrounding the conductor, which represents stored electric and magnetic energy, just as a compressed spring or a moving mass represents stored energy. In an alternating current circuit, the fields also alternate; that is, with every half wave of current and of voltage, the magnetic and the electric field start at the conductor and run outwards into space with the speed of light.[4] Where these alternating fields impinge on another conductor a voltage and a current are induced.[3] Any change in the electrical conditions of the circuit, whether internal[5] or external[6] involves a readjustment of the stored magnetic and electric field energy of the circuit, that is, a so-called transient. A transient is of the general character of a condenser discharge through an inductive circuit. The phenomenon of the condenser discharge through an inductive circuit therefore is of the greatest importance to the engineer, as the foremost cause of high-voltage and high-frequency troubles in electric circuits.[7] Electromagnetic induction is proportional to the intensity of the current and voltage in the conductor which produces the fields and to thefrequency. The higher the frequency the more intense the induction effect. Energy is transferred from a conductor that produces the fields (the primary) to any conductor on which the fields impinge (the secondary). Part of the energy of the primary conductor passes inductively across space into secondary conductor and the energy decreases rapidly along the primary conductor. A high frequency current does not pass for long distances along a conductor but rapidly transfers its energy by induction to adjacent conductors. Higher induction resulting from the higher frequency is the explanation of the apparent difference in the propagation of high frequency disturbances from the propagation of the low frequency power of alternating current systems. The higher the frequency the more preponderant become the inductive effects that transfer energy from circuit to circuit across space. The more rapidly the energy decreases and the current dies out along the circuit, the more local is the phenomenon.[3] The flow of electric energy thus comprises phenomena inside of the...