Objective: To predict the time taken for a wheel to roll on its axle, down a slope using energy methods Theory: Energy Method
Release Ød or radius r After descent h v m/sec m kg I kg.m2 ØD or radius R
Figure 1. Energy in a rolling wheel Referring to Figure 1 when the wheel is released from rest and subsequently rolls down the slope, it accelerates and hence gains energy. Now for a rolling wheel the kinetic energy has two components, translational due to the bodily movement of the mass centre down the slope and rotational due to the wheel spin. Now the source of this energy is the loss in potential energy as the wheel moves down the slope. If it is reasonable to assume that friction effects are insignificant then no energy is lost. Thus the loss in potential energy becomes a gain in kinetic energy. Hence, Loss in potential energy = mgh, is equal to the Gain in kinetic energy = 0.5mv2 + 0.5Iω 2 where v = velocity of the mass centre down slope (m/sec) ω = angular velocity of wheel (rad/sec) = v/r, r is the axle radius when rolling I = Polar moment of inertia = mR2/2 (1) (2)
Applying conservation of energy, equate equations 1 and 2 to derive an expression for the velocity v at the bottom of the slope. Using the linear equations of motion, find the expression for time t. Show these derivations in your report.
Page 1/2
Experiment: Using the measured distances (100mm to 500mm, intervals of 100mm) travelled by the wheel and the expressions i.e. (1) velocity at bottom of slope and (2) acceleration down the slope, calculate the time taken for the wheel to roll down the slope. Compare the calculated values with the experimental data Discussions: Plot a graph of time t2 vs distance s for calculated and experimental data. Explain the discrepancies between calculated values and experimental data. Discuss and quantify sources of errors. Report format: The report for the labs must have the following sections: Introduction – give a background to the subject and experiment Aim/Objective – describe the aim or objective of the experiment Theory – detailed description of the theory and engineering principles. All equations used in the calculations must be shown. Apparatus – a description and diagrams of the apparatus, diagrams must be fully labelled. All variables used in the theory section must be identified. Procedures – a detailed record of the execution of the experiment, that a person could repeat the experiment by reading it. Results – Tabulation of raw readings and the calculated ones. A sample calculation must be shown. Calculated and experimental values must be shown and %errors between them derived. Discussion – discuss on the results obtained. Compare between experimental and calculated results and discuss on the errors. Identify the sources of error and explain with calculations or theory involved. Listing errors without justification is not sufficient and this will not gain any marks. Conclusion – conclude if the aim or objective is achieved. References – Books or publications to support theory and discussion. Lecture notes cannot be used as reference. Identify where the materials are used in your report. Appendix (Optional) – any other information to support the report. Attendance to lab session is compulsory. Any report does not have all the above sections will be rejected and returned, and it will be considered as non-submission. Marks will be deducted for late submission.
Page 2/2
References: – Books or publications to support theory and discussion. Lecture notes cannot be used as reference. Identify where the materials are used in your report. Appendix (Optional) – any other information to support the report. Attendance to lab session is compulsory. Any report does not have all the above sections will be rejected and returned, and it will be considered as non-submission. Marks will be deducted for late submission. Page 2/2
You May Also Find These Documents Helpful
-
OBJECTIVE: The objectives of this experiment was to measure the speed and acceleration of a cart rolling down an incline, in addition to determining the mathematical relationship between the angle of an incline and the acceleration of a cart rolling down a ramp. Also, determining the value of free fall acceleration, g, by extrapolating the acceleration vs. sine of track angle graph, n addition, to determining if an extrapolation of the acceleration vs. sine of track angle valid.…
- 998 Words
- 4 Pages
Good Essays -
m = ½ ft/sec Δr/Δt = 2-8 ft/4-16 sec = -6 ft/-12 sec = ½ ft/sec dr/dt = 2/4 = ½ ft/sec…
- 434 Words
- 2 Pages
Satisfactory Essays -
The rubber band car is a car powered by a single rubber band. Energy efficiency is the amount of energy that is first stored in an object. The physic's definition of energy efficiency is very similar. Their term is the linear distance traveled using the energy stored in one rubber band. Energy efficiency is usually found when an object's energy transfers into a different type of energy. For us to find this, we have to attach a rubber band onto the car and release the rubber band to make the car move forward. The physic's definition is very reasonable because the rubber is the main and only source of energy that is applied to the car.…
- 1144 Words
- 5 Pages
Good Essays -
2. In red make a prediction for the distance-time, velocity-time and acceleration-time graphs for each situation.…
- 372 Words
- 2 Pages
Satisfactory Essays -
Measurements were made of the distance of fall (Y) at each of the four precisely measured times.…
- 260 Words
- 3 Pages
Satisfactory Essays -
10. The slope of a Velocity versus Time graph will tell you the object’s what (2.23)…
- 526 Words
- 2 Pages
Satisfactory Essays -
TABLE 1 *CRUMPLE ZONE: NON-CONTROLLED TRIAL | TRIAL | TIME(Sec) | DISTANCE(cm) | DISPLACEMENT(cm) | SPEED(m/s) | ACCELERATION= V-U/T | MAXIMUM VELOCITY(m/s) | ANGLE OF RAMP(Degrees) | MASS OF CAR(g) | GRAVITATIONAL POTENTIAL ENERGY(mgh) | KINETIC ENERGY(1/2mv2) | HEIGHT OF RAMP(cm) | 1 | 1.44 | 0.0149 | 0.0119 | 0.01035 | 0.574 | 0.826 | 20 | 226.22 | 0.1821 | 77.17 | 35 | 2 | 1.19 | 0.0153 | 0.0123 | 0.01286 | 0.869 | 1.034 | 25 | 226.22 | 0.2185 | 120.9 | 42 | 3 | 1.13 | 0.0158 | 0.0128 | 0.01398 | 1.003 | 1.133 | 30 | 226.22 | 0.2602 | 145.2 | 50 | * CRUMPLE ZONE : NON-CONTROLLED TRIAL | TRIAL | Force | Gravity | 1 | 1.28945 | 2.3 | 2 | 2.44318 | | 3 | 2.71464 | | TABLE 2 CRUMPLE ZONE: CARDBOARD TUBE CRUMPLE ZONE TRIAL | TRIAL | TIME(Sec) | DISTANCE(cm) | DISPLACEMENT(cm) | SPEED(m/s) | ACCELERATION | MAXIMUM VELOCITY(m/s) | ANGLE OF RAMP(Degrees) | MASS OF CAR(g) | GRAVITATIONAL POTENTIAL ENERGY(mgh) | KINETIC ENERGY(1/2mv2) | HEIGHT OF RAMP(cm) | 1 | *1.31 | *0.0152 | *0.0122 | *0.0114 | 0.00711 | 0.00931 | *20 | *222.12 | 0.1710 | 0.00966765 | *35 | 2 | *1.12 | *0.0137 | *0.0107 | *0.0124 | 0.009554 | 0.00955 | *25 | *222.12 | 0.2052 | 0.01012895 | *42 | 3 | 0.85 | 0.0160 | 0.0130 | 0.01529 | 0.015294 | 0.01529 | 30 | 222.12 | 0.2443 | 0.02526271 | 50 | CRUMPLE ZONE: CARDBOARD TUBE TRIAL | TRIAL | Force | Gravity | 1 | 1.579 | 2.2 | 2 | 2.122 | | 3 | 3.397 | | TABLE 3 * CRUMPLE ZONE:…
- 626 Words
- 3 Pages
Satisfactory Essays -
The main thing I learned from this was that friction is a good thing when it comes to the wheels. Secondly, that it is a must that your axles go on…
- 411 Words
- 2 Pages
Good Essays -
This lab has shown the conversion between Kinetic and Potential Energy. From the top of the rollercoaster was when the Ball bearing was at it's max Potential Energy. As the bearing travelled through the track it slowly transformed it's Potential Energy into Kinetic Energy abut as it hit each loop the bearing gained Potential Energry again. This proved our hypothesis of the bearing's energy being converted…
- 321 Words
- 2 Pages
Satisfactory Essays -
Purpose: To determine both qualitative and quantitative properties of the motion of a cart on an inclined plane on position vs. time, velocity vs. time and acceleration vs. time graphs.…
- 1526 Words
- 6 Pages
Powerful Essays -
The more wheels present in your vehicle, the more friction will be present. More friction present means more rolling mass. The more rolling mass you have, the greater the needed energy to travel farther and faster is. This means then that you must only use as many wheels as needed to keep the vehicle stable.…
- 749 Words
- 3 Pages
Good Essays -
Measurements were made of the distance of fall (Y) at each of the four precisely measured times.…
- 260 Words
- 3 Pages
Satisfactory Essays -
To graphically analyze motion, two graphs are commonly used: Displacement vs. Time and Velocity vs. Time. These two graphs provide significant information about motion including distance/displacement, speed/velocity, and acceleration. The displacement and acceleration of a moving body can be obtained from its Velocity vs. Time graph by respectively finding the area and the slope of the graph.…
- 859 Words
- 4 Pages
Good Essays -
The wasted energy it| | |to turn wheel to trigger movement etc. | | |…
- 2255 Words
- 10 Pages
Powerful Essays -
3. A wheel is rotating about an axis that is in the z direction. The angular velocity is – 6.00 rad/s at t = 0, increases linearly with time, and is +8.00 m/s at t = 7.00 s. We have taken counterclockwise rotation to be positive.…
- 1245 Words
- 5 Pages
Good Essays