Venture Fund

Only available on StudyMode
  • Download(s) : 131
  • Published : February 21, 2013
Open Document
Text Preview
The Risk and Return of Venture Capital
John H. Cochrane1 Graduate School of Business, University of Chicago March 19, 2004

School of Business, University of Chicago, 1101 E. 58th St. Chicago IL 60637, 773 702 3059, I am grateful to Susan Woodward, who suggested the idea of a selection-bias correction for venture capital returns, and who also made many useful comments and suggestions. I gratefully acknowledge the contribution of Shawn Blosser, who assembled the venture capital data. I thank many seminar participants and two anonymous referees for important comments and suggestions. I gratefully acknowledge research support from NSF grants administered by the NBER and from CRSP. Data, programs, and an appendix describing data procedures and algebra can be found at JEL code: G24. Keywords: Venture capital, Private equity, Selection bias.

1 Graduate

Abstract This paper measures the mean, standard deviation, alpha and beta of venture capital investments, using a maximum likelihood estimate that corrects for selection bias. We can only measure a return when a firm goes public, is acquired, or gets a new financing round. These events are more likely when the firm has achieved a good return, so estimates that do not correct for selection bias are optimistic. The bias-corrected estimate neatly accounts for log returns. It reduces the estimate of mean log return from 108% to 15%, and of the log market model intercept from 92% to -7%. However, log returns are very volatile, with an 89% standard deviation. Therefore, arithmetic average returns and intercepts are much higher than geometric averages. The selection bias correction dramatically attenuates but does not eliminate high arithmetic average returns: it reduces the mean arithmetic return from 698% to 59%, and it reduces the arithmetic alpha from 462% to 32%. I check the robustness of the estimates in a variety of ways. The estimates reproduce and are driven by clear stylized facts in the data, in particular the pattern of returns and exits as a function of project age. They are confirmed in subsamples and across industries, and they are robust to several ways of handling measurement errors. I find little difference between estimates that emphasize round-to-round returns and estimates based on round-toIPO returns, where we might see an illiquidity premium lifted. I also find that the smallest Nasdaq stocks have similar large means, volatilities, and arithmetic alphas in this time period, confirming that even the puzzles are not special to venture capital.



This paper measures the expected return, standard deviation, alpha, and beta of venture capital investments. Overcoming selection bias is the central hurdle in evaluating these investments, and it is the focus of this paper. We only observe a valuation when a firm goes public, receives new financing, or is acquired. These events are more likely when the firm has experienced a good return. I overcome this bias with a maximum-likelihood estimate. I identify and measure the increasing probability of observing a return as value increases, the parameters of the underlying return distribution, and the point at which firms go out of business. I base the analysis on measured returns from investment to IPO, acquisition, or additional financing. I do not attempt to fill in valuations at intermediate dates. I examine individual venture capital projects. Since venture funds often take 2-3% annual fees and 20-30% of profits at IPO, returns to investors in venture capital funds are often lower. Fund returns also reflect some diversification across projects. Issues The central question is whether venture capital investments behave the same way as publicly traded securities. Do venture capital investments yield larger risk-adjusted average returns than traded securities? In addition, which kind of traded securities do they resemble?...
tracking img