Two ships P and Q are moving along straight lines with constant velocities. Initially P is at a point O and the position vector of Q relative to O is (6i + 12j) km, where i and j are unit vectors directed due east and due north respectively. The ship P is moving with velocity 10j km h–1 and Q is moving with velocity (−8i + 6j) km h−1. At time t hours the position vectors of P and Q relative to O are p km and q km respectively. (a) (b) (c) Find p and q in terms of t. (3)

Calculate the distance of Q from P when t = 3.
(3)

Calculate the value of t when Q is due north of P.
(2) (Total 8 marks)

2.

A train starts from rest at a station A and moves along a straight horizontal track. For the first 10 s, the train moves with constant acceleration 1.2 m s–2. For the next 24 s it moves with constant acceleration 0.75 m s–2. It then moves with constant speed for T seconds. Finally it slows down with constant deceleration 3 m s–2 until it comes to rest at a station B. (a) (b) (c) Show that, 34 s after leaving A, the speed of the train is 30 m s–1. (3)

Sketch a speed-time graph to illustrate the motion of the train as it moves from A to B. (3)

Find the distance moved by the train during the first 34 s of its journey from A. (4)

The distance from A to B is 3 km. (d) Find the value of T.
(4) (Total 14 marks)

3.

Two cars A and B are moving in the same direction along a straight horizontal road. At time t = 0, they are side by side, passing a point O on the road. Car A travels at a constant speed of 30 m s–1. Car B passes O with a speed of 20 m s–1, and has constant acceleration of 4 m s–2. Find (a) (b) (c) the speed of B when it has travelled 78 m from O, (2)

the distance from O of A when B is 78 m from O,
(4)

the time when B overtakes A.
(5) (Total 11 marks)

4.

A post is driven into the ground by means of a blow from a pile-driver. The pile-driver falls from rest from a height of 1.6 m above the top of the post. (a) Show that...

...(1-D) with constant (uniform) velocity with constant (uniform) acceleration, e.g. free fall motion Projectile motion (2-D) x-component (horizontal) y-component (vertical)
2
Learning Outcome:
2.1 Linear Motion (2 hour) www.kmph.matrik.edu.my
At the end of this chapter, students should be able to: Define and distinguish between i) distance and displacement, ii) speed and velocity, iii) instantaneous...

...Velocity and Acceleration (Video Analysis)
NAME
Abstract:
With using the new software this lab was different than the rest. We determined many solutions using video analysis. We used a frictionless track with a “car” and recorded using loggerpro software. We used this software to determine average velocity and instantaneous velocity. With this information we than discovered the average acceleration, mine was...

...in Lesson 1 is acceleration. An often confused quantity, acceleration has a meaning much different than the meaning associated with it by sports announcers and other individuals. The definition of acceleration is:
Acceleration is a vector quantity that is defined as the rate at which an object changes its velocity. An object is accelerating if it is changing its velocity.
Sports announcers will occasionally...

...ACCELERATION:
Good afternoon everyone! Our group will discuss about acceleration. But before that, what is acceleration?
Acceleration is a vector quantity that is defined as the rate at which an object changes its velocity. An object is accelerating if it is changing its velocity.
People will occasionally say that a person is accelerating if he/she is moving fast. Yet acceleration has...

...aerodynamic lift force and engine’s thrust so that the plane flew with constantvelocity.
3. The spring was extended to 3cm under mass of 500g. Determine the spring constant.
4. The distance between two planets of masses 25x1025kg and 30x1025kg is 1012km. Calculate the attractive force between them.
5. The load with mass m=1.5kg is attached to the string of length l=1.5m and moves along a vertical circle with constant...

...Acceleration Worksheet 3
Worked Example
A cheetah running at 20 m s−1 slows down as it approaches a stream. Within 3.0s, its speed has reduced to 2 m s−1. Calculate the average acceleration of the cheetah.
Solve the following:
1. A sports car, accelerating from rest, was timed over 400 m and was found to reach a speed of 120 km h−1 in 18.0 s.
a. What was the average speed of the car in m s−1?
b. Calculate the average acceleration...

... it is common to assume that the velocity of money is constant.
The velocity of money is a measure of average number of times per year that a dollar is exchanged.
The quantity theory of money states that the money supply multiplied by the velocity of money is equal to the price level multiplied by output.
( )
Price level multiplied by output is the nominal output. Therefore, a percent change in the money supply added to a...

...and dirty secrets of a twisted mind, a serial killer stalking his prey in the subway. And Duncan can't stop reading. What would you do with a book like that? How far would you go to catch a madman? This is the teaser to an amazing book I read “Acceleration” By: Graham McNamee.
Duncan the main leading character of the story discovers a journal belonging to what he thinks is a serial killer and he uses his knowledge of profiling as well as the clues from the journal to try to...

983 Words |
2 Pages

Share this Document

{"hostname":"studymode.com","essaysImgCdnUrl":"\/\/images-study.netdna-ssl.com\/pi\/","useDefaultThumbs":true,"defaultThumbImgs":["\/\/stm-study.netdna-ssl.com\/stm\/images\/placeholders\/default_paper_1.png","\/\/stm-study.netdna-ssl.com\/stm\/images\/placeholders\/default_paper_2.png","\/\/stm-study.netdna-ssl.com\/stm\/images\/placeholders\/default_paper_3.png","\/\/stm-study.netdna-ssl.com\/stm\/images\/placeholders\/default_paper_4.png","\/\/stm-study.netdna-ssl.com\/stm\/images\/placeholders\/default_paper_5.png"],"thumb_default_size":"160x220","thumb_ac_size":"80x110","isPayOrJoin":false,"essayUpload":false,"site_id":1,"autoComplete":false,"isPremiumCountry":false,"userCountryCode":"US","logPixelPath":"\/\/www.smhpix.com\/pixel.gif","tracking_url":"\/\/www.smhpix.com\/pixel.gif","cookies":{"unlimitedBanner":"off"},"essay":{"essayId":37147489,"categoryName":"Mathematics","categoryParentId":"19","currentPage":1,"format":"text","pageMeta":{"text":{"startPage":1,"endPage":3,"pageRange":"1-3","totalPages":3}},"access":"premium","title":"Velocity and Constant Acceleration","additionalIds":[17,9,103,29],"additional":["Literature","Entertainment","Entertainment\/Film","Transportation"],"loadedPages":{"html":[],"text":[1,2,3]}},"user":null,"canonicalUrl":"http:\/\/www.studymode.com\/essays\/Velocity-And-Constant-Acceleration-1457105.html","pagesPerLoad":50,"userType":"member_guest","ct":10,"ndocs":"1,500,000","pdocs":"6,000","cc":"10_PERCENT_1MO_AND_6MO","signUpUrl":"https:\/\/www.studymode.com\/signup\/","joinUrl":"https:\/\/www.studymode.com\/join","payPlanUrl":"\/checkout\/pay","upgradeUrl":"\/checkout\/upgrade","freeTrialUrl":"https:\/\/www.studymode.com\/signup\/?redirectUrl=https%3A%2F%2Fwww.studymode.com%2Fcheckout%2Fpay%2Ffree-trial\u0026bypassPaymentPage=1","showModal":"get-access","showModalUrl":"https:\/\/www.studymode.com\/signup\/?redirectUrl=https%3A%2F%2Fwww.studymode.com%2Fjoin","joinFreeUrl":"\/essays\/?newuser=1","siteId":1,"facebook":{"clientId":"306058689489023","version":"v2.8","language":"en_US"},"analytics":{"googleId":"UA-32718321-1"}}