Transducers Used in the Cardiac Ultrasound Machine.

Only available on StudyMode
  • Topic: Piezoelectricity, Ultrasound, Ferroelectricity
  • Pages : 8 (3604 words )
  • Download(s) : 52
  • Published : August 16, 2011
Open Document
Text Preview

Ultrasound imaging depends on the ability of piezoelectric crystals to generate sound when excited with alternating current and the reverse effect of charge accumulation or current flow when such crystals are subjected to pressure from sound waves. The first known ultrasound imaging machine was designed by K. T. Dussik in Australia in 1937. However, despite its widespread acceptance today, medical ultrasound did not develop as rapidly as X-ray imaging. Despite the relatively slow start, medical ultrasound imaging is very widely accepted today because there is no ionising radiation involved and hence the procedure is relatively safe. Ultrasound equipment is also cheaper as compared to X-ray imaging, magnetic resonance imaging, MRI and other techniques associated with nuclear medicine. The procedure involves minimal patient discomfort and is very useful for examining the soft tissues or the developing foetus. A dramatic increase in the number of older patients with chronic heart and valve disease has resulted in a prolific demand for the ultrasound cardiac imaging machines which can satisfy the requirements associated with fast and cost effective measurement of cardiac anatomy or function. One of the critical elements in the medical ultrasound imaging system is the ultrasound transducer without which signal processing and visualisation of the soft tissue images is impossible. Although many naturally occurring substances such as quartz exhibit the piezoelectric effect, lead zirconate titanate (PZT) ceramic ferroelectric materials have for many years been used for biomedical applications because of their superior characteristics for soft tissue imaging. Polyvinylidene difluoride (PVDF), transducer material has demonstrated advantages as a high frequency receiver. Single or multilayer transducers made of these elements can be used for ultrasound imaging as single transducers operating in A-mode or a two or three dimensional transducer array for B-mode, C-mode or M-mode ultrasound imaging. This brief essay takes a look at transducers for medical ultrasound.


The principle of operation of a cardiac ultrasound imaging device is based on the information that is provided by the varying delay times of echoes that are reflected from various depths of the human body tissue as a result of the ultrasound pulses that are generated by an ultrasound transducer being incident on the body tissue. Delay times of echoes from different depths are different and ultrasound is reflected from the interface of different types of tissues. A Doppler shift in frequency is also generated as a result of moving objects and the attenuation of ultrasound waves depends on the type of tissue that the ultrasound wave is travelling through. The ultrasound transducer which is responsible for the generation and detection of reflected ultrasound is, therefore, an essential component of the ultrasound imaging device. Ultrasound transducers work on the basis of the piezoelectric effect in which an alternating voltage applied to piezoelectric crystal material causes the crystals to become electrically polarised as a result of the applied electric field and hence vibrate with the alternating voltage to produce sound. Such crystals also become electrically polarised when stress is applied to them and hence any sound waves which are incident on them result in charge accumulation on the crystal surface and hence the generation of an alternating voltage. Thus, an ultrasound transducer consists of a suitable piezoelectric material sandwiched between electrodes that are used to provide a fluctuating electric field when the transducer is required to generate ultrasound. When the transducer is required to detect ultrasound, the electrodes may be used to detect any fluctuating voltages produced as a result of the polarisation of the crystals of the piezoelectric material in response to incident sound which generates fluctuating mechanical stresses...
tracking img