Before I talk about the history of Pi I want to explain what Pi is. Webster's Collegiate Dictionary defines Pi as "1: the 16th letter of the Greek alphabet... 2 a: the symbol pi denoting the ratio of the circumference of a circle to its diameter b: the ratio itself: a transcendental number having a value to eight decimal places of 3.14159265" A number can be placed into several categories based on its properties. Is it prime or composite? Is it imaginary or real? Is it transcendental or algebraic? These questions help define a number's behavior in different situations. In order to understand where Pi fits in to the world of mathematics, one must understand several of its properties pi is irrational and pi is transcendental. A rational number is one that can be expressed as the fraction of two integers. Rational numbers converted into decimal notation always repeat themselves somewhere in their digits. For example, 3 is a rational number as it can be written as 3/1 and in decimal notation it is expressed with an infinite amount of zeros to the right of the decimal point. 1/7 is also a rational number. Its decimal notation is 0.142857142857…, a repetition of six digits. However, the square root of 2 cannot be written as the fraction of two integers and is therefore irrational. For many centuries prior to the actual proof, mathematicians had thought that pi was an irrational number. The first attempt at a proof was by Johaan Heinrich Lambert in 1761. Through a complex method he proved that if x is rational, tan(x) must be irrational. It follows that if tan(x) is rational, x must be irrational. Since tan(pi/4)=1, pi/4 must be irrational; therefore, pi must be irrational. Many people saw Lambert's proof as too simplified an answer for such a complex and long-lived problem. In 1794, however, A. M. Legendre found another proof which backed Lambert up. This new proof also went as far as to prove that Pi^2 was also irrational. In the long history of the...

...The History of Pi
The History of Pi
Most individuals who have a general mathematical education that touches on the basics of geometry commonly know pi. The definition of pi is the ratio of the circumference to the diameter of the circle (Smoller, 2001). The majority of the population, however, does not realize the history associated with the symbol, which not only spans throughout the centuries but throughout the millenniums. The Babylonians, Egyptians, Archimedes of Syracuse, Leonardo of Pisa, Francois Viete, Leonhard Euler, Asian mathematicians such as Liu Hiu, Tsu Ch’ung-Chih, Arya Bhatta, Gottfried Leibniz, Isaac Newton, William Jones, John Machin. George Buffon and Srinivasa Ramanujan, have all played a role in the enriched past of this important mathematical symbol.
The ancient Babylonians dates back to the 18th century BCE and reigned in Mesopotamia. The Babylonia, even though it declined drastically in the 17th century, existed until 539 when the Persians consumed Babylonia (Kjeilen, 2009). During this time, they made magnificentstructures with archways that held religious emphasis. The Babylonians used a developed mathematical system, which included six as the root number as opposed to 10 which are commonly used today (Kjeilen, 2009). Even though the Babylonians has a variation on their mathematical system, they calculated the area of a circle by taking three...

...History of Pi
There are many people who have discovered and proved what pi is. As time goes on people discover more and more of the seemingly random numbers. Four of the people who proved pi are the Liu Hui, Archimedes of Syracuse, James Gregory, and the Bible.
The first proof I will be talking about is Liu Hui’s. Liu Hui was a Chinese mathematician whose method for proving pi was to find the area of a polygon inscribed in a circle. When the number of sides on the inscribed polygon increased, its area became closer to the circumference of a circle and pi. For finding the side length of an inscribed polygon Liu Hui used a simple formula. (13Ma3)
To find the side length of an inscribed polygon of 2n sides, if the side length of a polygon with n sides is known he used the following formula:
In this formula k stands for a temporary variable, and Sn stands for the side length of an inscribed polygon with n sides. (13Ma3)
We will start with a hexagon inside of a circle. The radius of the circle is one, the area is pi. The side length of the hexagon is 1. To calculate the next k value, all we need to do is do an addition and a square root like in the following:
The area of a regular polygon is A=1/2nsa. The n stands for number of sides, s stands for side length, and a stands for apothem. As the number of sides increases, the apothem becomes closer and closer to...

...What is π?
Webster's Collegiate Dictionary defines π as "1: the 16th letter of the Greek alphabet... 2 a: the symbol pi denoting the ratio of the circumference of a circle to its diameter b: the ratio itself: a transcendental number having a value to eight decimal places of 3.14159265"
A number can be placed into several categories based on its properties. Is it prime or composite? Is it imaginary or real? Is it transcendental or algebraic? These questions help define a number's behavior in different situations. In order to understand where π fits in to the world of mathematics, one must understand several of its properties: π is irrational and π is transcendental.
The History of π
In the long history of the number π, there have been many twists and turns, many inconsistencies that reflect the condition of the human race as a whole. Through each major period of world history and in each regional area, the state of intellectual thought, the state of mathematics, and hence the state of π, has been dictated by the same socio-economic and geographic forces as every other aspect of civilization. The following is a brief history, organized by period and region, of the development of our understanding of the number π.
In ancient times, π was discovered independently by the first civilizations to begin agriculture. Their new sedentary life style first freed up time for mathematical pondering,...

...Paper - I
1. Sources: Archaeological sources:Exploration, excavation, epigraphy, numismatics, monuments Literary sources: Indigenous: Primary and secondary; poetry, scientific literature, literature, literature in regional languages, religious literature. Foreign accounts: Greek, Chinese and Arab writers.
2. Pre-history and Proto-history: Geographical factors; hunting and gathering (paleolithic and mesolithic); Beginning of agriculture (neolithic and chalcolithic).
3. Indus Valley Civilization: Origin, date, extent, characteristics, decline, survival and significance, art and architecture.
4. Megalithic Cultures: Distribution of pastoral and farming cultures outside the Indus, Development of community life, Settlements, Development of agriculture, Crafts, Pottery, and Iron industry.
5. Aryans and Vedic Period: Expansions of Aryans in India. Vedic Period: Religious and philosophic literature; Transformation from Rig Vedic period to the later Vedic period; Political, social and economical life; Significance of the Vedic Age; Evolution of Monarchy and Varna system.
6. Period of Mahajanapadas: Formation of States (Mahajanapada): Republics and monarchies; Rise of urban centres; Trade routes; Economic growth; Introduction of coinage; Spread of Jainism and Buddhism; Rise of Magadha and Nandas. Iranian and Macedonian invasions and their impact.
7. Mauryan Empire: Foundation of the Mauryan Empire, Chandragupta, Kautilya and Arthashastra; Ashoka;...

...The History of Pi
Throughout the history of mathematics, one of the most enduring challenges has been the calculation of the ratio between a circle's circumference and diameter, which has come to be known by the Greek letter pi. From ancient Babylonia to the Middle Ages in Europe to the present day of supercomputers, mathematicians have been striving to calculate the mysterious number. They have searched for exact fractions, formulas, and, more recently, patterns in the long string of numbers starting with 3.14159 2653..., which is generally shortened to 3.14. William L. Schaaf once said, "Probably no symbol in mathematics has evoked as much mystery, romanticism, misconception and human interest as the number pi" (Blatner, 1). We will probably never know who first discovered that the ratio between a circle's circumference and diameter is constant, nor will we ever know who first tried to calculate this ratio. The people who initiated the hunt for pi were the Babylonians and Egyptians, nearly 4000 years ago. It is not clear how they found their approximation for pi, but one source (Beckman) makes the claim that they simply made a big circle, and then measured the circumference and diameter with a piece of rope. They used this method to find that pi was slightly greater than 3, and came up with the value 3 1/8 or 3.125 (Beckmann, 11). However, this theory is...

...wRGEARJGNEJRLK HREJKH ERN GREKGERgkwergwEGJ WJRE GWKJER GWKERGKWERJG KW EJRGKJEW GEWKJG WJKEW tgkjE WGWEwejk GREJkgerkah earh jkearherakjh earkjh earkjh eraljherajl heral jhreajl heraj lheralj heralj her jlheraljh earh erah teh eat haahearh erah eath eath eta heth urhgqaehg isodghsdouihgaeuhwrg rwlnslnsdlgnetlnlsnrlgneorignerg eth yrh yr wehfb ygrwugy wrghrGrigirGW BER GBR TB AD B ADB RTAH ART HBAED TH ATEH ERTA HET AH RTH AER G ERAG ERA GE RAG REA GYA ER TRE HG R gera ha terh aerh brt h erag er yht hqrajgkjjern jkwrbn rejk bkrjw r wgj rg hgr kgh jurghurghrgr guhrg uh rg huri i hur uh o rgoh h hgeohuwfeuhwf hewouu rwoeqoiew uowefh uwrugowfeugwfe ugo wefugo uwegf ugowfe guoewfugwfe guwegufew guwfe ugefw ug feguw geufw guwefguwefgufewugewfgufgukdgdask g jksdjkwgjhwerjkt jhwjkwget kwettw t y wu u 7jae ga efv SD Gf hh eahr hreh tthr th ht he her rherhe erh rhejt rtjr jy kuu kku yu kkty j j ht gr gr gr gr RE REAHT EAHA ERT HET YH TE JTE AJ TAE J TE JA ETJ TE HE TAH ET J EATJ ET HA ET HAE TH AER AERH RE H AE HRER AH EAHLTRKE ALJHB KJB HK VFR DFF J UIJI IOH UHU IO I KIVNJK RERUUHGRE NTHENMTHE KT THT HTTJT Over the years, many have arisen to become what is commonly known as, a leader. Traits of a leader vary from being dedicated and altruistic to having courage and making sacrifices. All of those who step up to be a leader have a certain goal that they are trying to achieve. However, not all are successful in reaching what they aim for. This is what separates the true...

...Name:
Date:
Graded Assignment
Final Exam Part 2
I. Map
On this world map, indicate the following features:
Amazon Rainforest
Panama Canal
The Himalayas
The Ring of Fire
The Mississippi River
The Gobi Desert
(10 points)
II. Graphic Organizer
Fill in the table below about these five major world religions. Do not fill in the shaded boxes.
(10 points)
Religion
Name at least
one Holy Text
How do you achieve
enlightment?
Describe their view about the afterlife.
Hinduism
Bhagvada Gata
Do good deeds to get good karma until you break the samsara or cycle of reincarnation and reach enlightenment
Buddhism
Believe the Four Truths are true and real, follow the Eightfold Path, meditation is one of the major steps to reach enlightenment
Judaism
Old Testament
God promised the Jews, people of Israel, paradise and those who hate the Jews and mistreat them are going to go to Hell
Christianity
New Testament
Islam
Quran
People who believe in all the five pillars and do them and do righteous deeds go to heaven while the disbelievers and those who sin are punished and go to Hell
III. Short Answer
1. Explain the role of river valleys in the development of civilizations. Name at
least two river valleys as examples. (10 points)
Rivier valleys first and foremost provided water, a basic necessity for humans. It also provided fertile soil for agriculture, which led to settlements and brought hunting and gathering to an end....

...Name: Andiswa Mlambo
Student no:48090239
Unique number: 844868
Assignment : 04
Question 1
The reform of Alexander11 [1855-1881] were meaningless and left tsarist Russia unchanged ; do you agree? Give reasons for your answer.
I agree that the reform of Alexander11 [1855-1881] were meaningless and left tsarist Russia unchanged. The disastrous state of affairs left by Nicholas I meant that change had to come to Russia. His son, Alexander II was responsible for introducing major changes to the social system and other important aspects of life in Russia. Because of this, the reign of Alexander II was one of the most important periods in Russian history. Many historians believe that if Alexander II had been prepared to grant moderate political concessions, along with his social, legal and military reforms, Russia might have gradually become a constitutional monarchy. But although Alexander did tackle the urgent problem of serfdom, his reforms did not go far enough and he too was determined to hang on to his autocratic power.
After the defeat in the Crimean War many Russians now realised that Russia's only hope for military survival lay with modernisation. This would mean industrialisation to supply the military, improvements to communications and the introduction of a railway system. Financial reforms were introduced to meet the needs of the government not of the private sector. In 1860 Alexander II established the State Bank to provide credit...

1211 Words |
4 Pages

Share this Document

{"hostname":"studymode.com","essaysImgCdnUrl":"\/\/images-study.netdna-ssl.com\/pi\/","useDefaultThumbs":true,"defaultThumbImgs":["\/\/stm-study.netdna-ssl.com\/stm\/images\/placeholders\/default_paper_1.png","\/\/stm-study.netdna-ssl.com\/stm\/images\/placeholders\/default_paper_2.png","\/\/stm-study.netdna-ssl.com\/stm\/images\/placeholders\/default_paper_3.png","\/\/stm-study.netdna-ssl.com\/stm\/images\/placeholders\/default_paper_4.png","\/\/stm-study.netdna-ssl.com\/stm\/images\/placeholders\/default_paper_5.png"],"thumb_default_size":"160x220","thumb_ac_size":"80x110","isPayOrJoin":false,"essayUpload":false,"site_id":1,"autoComplete":false,"isPremiumCountry":false,"userCountryCode":"US","logPixelPath":"\/\/www.smhpix.com\/pixel.gif","tracking_url":"\/\/www.smhpix.com\/pixel.gif","cookies":{"unlimitedBanner":"off"},"essay":{"essayId":33531682,"categoryName":"Fiction","categoryParentId":"17","currentPage":1,"format":"text","pageMeta":{"text":{"startPage":1,"endPage":3,"pageRange":"1-3","totalPages":3}},"access":"premium","title":"The History of Pi","additionalIds":[10,2,9,7],"additional":["Geography","Awards \u0026 Events","Entertainment","Education"],"loadedPages":{"html":[],"text":[1,2,3]}},"user":null,"canonicalUrl":"http:\/\/www.studymode.com\/essays\/The-History-Of-Pi-259265.html","pagesPerLoad":50,"userType":"member_guest","ct":10,"ndocs":"1,500,000","pdocs":"6,000","cc":"10_PERCENT_1MO_AND_6MO","signUpUrl":"https:\/\/www.studymode.com\/signup\/","joinUrl":"https:\/\/www.studymode.com\/join","payPlanUrl":"\/checkout\/pay","upgradeUrl":"\/checkout\/upgrade","freeTrialUrl":"https:\/\/www.studymode.com\/signup\/?redirectUrl=https%3A%2F%2Fwww.studymode.com%2Fcheckout%2Fpay%2Ffree-trial\u0026bypassPaymentPage=1","showModal":"get-access","showModalUrl":"https:\/\/www.studymode.com\/signup\/?redirectUrl=https%3A%2F%2Fwww.studymode.com%2Fjoin","joinFreeUrl":"\/essays\/?newuser=1","siteId":1,"facebook":{"clientId":"306058689489023","version":"v2.8","language":"en_US"}}