Get 20% off StudyMode
Page 1 of 41

Surface Chemistry in Nanoscale Materials

Continues for 40 more pages »
Read full document

Surface Chemistry in Nanoscale Materials

  • By
  • October 2013
  • 9937 Words
  • 1 View
Page 1 of 41
Materials 2009, 2, 2404-2428; doi:10.3390/ma2042404

ISSN 1996-1944

Surface Chemistry in Nanoscale Materials
Jürgen Biener 1,*, Arne Wittstock 2, Theodore F. Baumann 1, Jörg Weissmüller 3,4, Marcus Bäumer 2 and Alex V. Hamza 1




Nanoscale Synthesis and Characterization Laboratory, Lawrence Livermore National Laboratory, Livermore, USA; E-Mails: (T.F.B.); (A.V.H.) Institut für Angewandte und Physikalische Chemie, Universität Bremen, Bremen, Germany; E-Mails: (A.W.); (M.B.) Institut für Nanotechnologie, Karlsruher Institut für Technologie, Karlsruhe, Germany; E-Mail: (J.W.)

Technische Physik, Universität des Saarlandes, Saarbrücken, Germany

* Author to whom correspondence should be addressed; E-Mail:; Tel.: +1-925-422-9081; Fax: +1-925-422-7098.
Received: 31 October 2009; in revised form: 5 December 2009 / Accepted: 14 December 2009 / Published: 16 December 2009

Abstract: Although surfaces or, more precisely, the surface atomic and electronic structure, determine the way materials interact with their environment, the influence of surface chemistry on the bulk of the material is generally considered to be small. However, in the case of high surface area materials such as nanoporous solids, surface properties can start to dominate the overall material behavior. This allows one to create new materials with physical and chemical properties that are no longer determined by the bulk material, but by their nanoscale architectures. Here, we discuss several examples, ranging from nanoporous gold to surface engineered carbon aerogels that demonstrate the tuneability of nanoporous solids for sustainable energy applications.

Keywords: nanoporous materials; nanoporous Au; carbon aerogel; surface chemistry; surface stress; atomic layer deposition; catalysis;...