Domain: describes all the values of that ‘x’ is able to take. Range: describes all the values that ‘y’ is able to take. Period: of a graph describes the part of a graph, which is periodically repeated. It uses the horizontal scale. Amplitude: of a ‘wave’ graph is the height of the wave fro the horizontal.
Relations Between the Trig Ratios sin θ = y tan θ = y/x Pythagorean Identities 1. tan θ = sin θ /cos θ 2. cot θ = cos θ /sin θ 3. cos² θ + sin² θ = 1 4. 1 + tan² θ = sec² θ 5. cot² θ + 1 = cosec² θ cos θ = x cot θ = x/y
Mathematics Summary Sheets – Trigonometry
2
Trig Equations We need: • • Domain: sinx cosx all real x all real x
Range: –1 ≤ sinx ≤ 1 1 ≤ cosx ≤ 1 ∞ < tanx < ∞
• • • •
tanθ exists except for θ = ± 90°, ± 270°, ± 450° … ASTC results Special triangles (exact ratios) Results for 0°, 90°, 180°, 270°, 360°. B c A a C
Area of a triangle
A= ½absinC
Sine Rule a b c ______ = ______ = ______ sinA sinB sinC
...Teaching trigonometry using Empirical Modelling
0303417
Abstract
The trigonometric functions sin(x), cos(x) and tan(x) are relationships that exist between the angles
and length of sides in a rightangled triangle. In Empirical Modelling terms, the angles in a triangle
and the length of the sides are observables, and the functions that connect them are the definitions.
These welldefined geometric relationships can be useful when teaching GCSElevel students about
the functions, as they provide a way to visualise what can be thought of as fairly abstract functions.
This paper looks at how different learning styles apply to Empirical Modelling, and presents a practical example of their use in a model to teach trigonometry.
1 Introduction
The trigonometric functions sin(x), cos(x) and tan(x)
are relationships that exist between the angles and
length of sides in a rightangled triangle. In Empirical Modelling terms, the angles in a triangle and the
length of the sides are observables, and the functions
that connect them are the definitions. These welldefined geometric relationships can be useful when
teaching GCSElevel students about the functions,
as they provide a way to visualise what can be
thought of as fairly abstract functions. Rather than
teaching students by showing them diagrams in an
instructive way (already a good way of doing it), a
constructive approach may allow students to gain a
better understanding...
...Trigonometry (from Greek trigōnon "triangle" + metron "measure"[1]) is a branch of mathematics that studies triangles and the relationships between the lengths of their sides and the angles between those sides. Trigonometry defines the trigonometric functions, which describe those relationships and have applicability to cyclical phenomena, such as waves. The field evolved during the third century BC as a branch of geometry used extensively for astronomical studies.[2] It is also the foundation of the practical art of surveying.
Trigonometry basics are often taught in school either as a separate course or as part of a precalculus course. The trigonometric functions are pervasive in parts of pure mathematics and applied mathematics such as Fourier analysis and the wave equation, which are in turn essential to many branches of science and technology. Spherical trigonometry studies triangles on spheres, surfaces of constant positive curvature, in elliptic geometry. It is fundamental to astronomy and navigation. Trigonometry on surfaces of negative curvature is part of Hyperbolic geometry.
Contents
f one angle of a triangle is 90 degrees and one of the other angles is known, the third is thereby fixed, because the three angles of any triangle add up to 180 degrees. The two acute angles therefore add up to 90 degrees: they are complementary angles. The shape of a triangle is completely determined,...
...Trigonometry
 Introduction to trigonometryAs you see, the word itself refers to three angles  a reference to triangles. Trigonometry is primarily a branch of mathematics that deals with triangles, mostly right triangles. In particular the ratios and relationships between the triangle's sides and angles. It has two main ways of being used: 1. In geometryIn its geometry application, it is mainly used to solve triangles, usually right triangles. That is, given some angles and side lengths, we can find some or all the others. For example, in the figure below, knowing the height of the tree and the angle made when we look up at its top, we can calculate how far away it is (CB). (Using our full toolbox, we can actually calculate all three sides and all three angles of the right triangle ABC). 2. AnalyticallyIn a more advanced use, the trigonometric ratios such as as Sine and Tangent, are used as functions in equations and are manipulated using algebra. In this way, it has many engineering applications such as electronic circuits and mechanical engineering. In this analytical application, it deals with angles drawn on a coordinate plane, and can be used to analyze things like motion and waves. Chapter1Angles in the Quadrants( Some basic Concepts)In trigonometry, an angle is drawn in what is called the "standard position". The vertex of the angle is on the origin, and one side of the angle is fixed and drawn along the positive...
...Trigonometry (from Greek trigōnon "triangle" + metron"measure"[1]) is a branch of mathematics that studies triangles and the relationships between their sides and the angles between these sides. Trigonometry defines the trigonometric functions, which describe those relationships and have applicability to cyclical phenomena, such as waves. The field evolved during the third century BC as a branch of geometry used extensively for astronomical studies.[2] It is also the foundation of the practical art of surveying.
Trigonometry basics are often taught in school either as a separate course or as part of a precalculus course. The trigonometric functions are pervasive in parts of pure mathematics and applied mathematics such as Fourier analysis and the wave equation, which are in turn essential to many branches of science and technology. Spherical trigonometry studies triangles on spheres, surfaces of constant positive curvature, in elliptic geometry. It is fundamental to astronomy and navigation. Trigonometry on surfaces of negative curvature is part of Hyperbolic geometry.


\History
Main article: History of trigonometry
The first trigonometric tablewas apparently compiled byHipparchus, who is now consequently known as "the father of trigonometry."[3]
Sumerian astronomers introduced angle measure, using a division of...
...Physics
Glossary
Electric circuit  one simple, complete conducting circuit pathway
Electronic gadget  a machine that consists of multiple circuits and transducers
Transducer – device that converts energy from one form to another
Input transducer – converts other forms of energy (sound, light, heat) into electrical energy, e.g. microphone
Output transducer – converts electrical energy into other forms of energy, e.g. speakers
Processor Component – found in electronic gadgets, receives signals from input transducer and responds by operating the output transducer
Transistor – device found in processors that can amplify electrical signals or act as a switch
Diodes – also found in processors, allows the electric current to flow in only one direction
Semiconductor – a material whose ability to conduct electricity is somewhere between a conductor and insulator
LED – a light emitting diode, which is a transistor which transforms electric current into thermal and light energy. Found in traffic lights, car lamps and indicator lights, and are sturdy, operate for a longer time and use less energy than standard lights.
Integrated circuit – a usually complex circuit with many components, and is packaged into a small unit called a chip
Magnetic field – is created when an electric charge moves; it is a region where a permanent experiences a magnetic force of attraction or repulsion
Electromagnet – is created when a coil of wire is wrapped around a soft piece of iron when...
...A Complicated Kindness SummarySheet
Core Mennonite Beliefs
* First and foremost: Christians
* Specific Mennonite philosophies
* Non violence
* No circumstances
* Mennonites are exempt from going to war
* Rejection of the world
* Should focus on heaven
* Things in real life are distractions
* Community
* Strong emphasis on doing charity and helping each other
* Putting faith into action
* Actions reflect innerself
Religious fundamentalism and the comingofage novel
* Coming of age
* The achievement of maturity
* Transition from childhood to adulthood
* Fundamentalist religions have strict code for adult behavior
* Comingofage novels set in fundamentalist communities often feature a protagonist who rebels against religious authority
* Comingofage novels set in fundamentalist communities tend to end either with:
* The protagonist coming to a more mature understanding of his/her religion OR
* The protagonist rejecting his/her religion
Significance of the songs
* Rejection of Mennonite values
* Yet some songs have Christian themes
* Embracing of secular world
* Connection to other characters
* Tash
* Trudie
* Ray
* Travis
* Other young people
Plot
* It does not exist
* Wanders around, frequent flashbacks
* Lack of...
...SummarySheet
• Malpractice and negligence both concern actions that are results of omission and acting in way that causes injury to patient. Malpractice concerns professional.
• Tart is a civil wrong made against a person or property.
• Elements of malpractice: duty owed to patient, breach of the duty, foreseeability, causation, injury, damage.
• Nurse Managers are responsible for ensuring that standards of care are current in policy and that nursing staff follow the standards.
• Issues that impact licensure and renewal of licensure.
• Advanced directives, DNRs, patient bill of rights and how these impact patient’s rights and the role of the nurse.
• Legal implication of the Health Insurance Portability and Accountability Act (HIPPA).
• Behaviors that comply with HIPPA
• Legal implications for floating, mandatory overtime, refusal of assignment, and understaffing, and how these impact the nurse.
• Selfmanagement involves selfdirected change to achieve.
• Stressors can be both professional and personal, being able to identify them and know what caused them helps control them.
• There are many different ways to manage stress, find one that works for you.
• Learn how to manage time effectively.
• Meeting management strategies: managing meetings and delegation.
• Differentiate among career styles and how they influence career options.
• Evaluate the relevance of a cover letter, curriculum vitae, and résumé as entrées to...
...Early trigonometry
The ancient Egyptians and Babylonians had known of theorems on the ratios of the sides of similar triangles for many centuries. But preHellenic societies lacked the concept of an angle measure and consequently, the sides of triangles were studied instead, a field that would be better called "trilaterometry".[6]The Babylonian astronomers kept detailed records on the rising and setting of stars, the motion of the planets, and the solar and lunar eclipses, all of which required familiarity with angular distances measured on the celestial sphere.[2] Based on one interpretation of the Plimpton 322 cuneiform tablet (c. 1900 BC), some have even asserted that the ancient Babylonians had a table of secants.[7] There is, however, much debate as to whether it is a table of Pythagorean triples, a solution of quadratic equations, or a trigonometric table.The Egyptians, on the other hand, used a primitive form of trigonometry for building pyramids in the 2nd millennium BC.[2] The Rhind Mathematical Papyrus, written by the Egyptian scribe Ahmes (c. 1680–1620 BC), contains the following problem related to trigonometry:[2]"If a pyramid is 250 cubits high and the side of its base 360 cubits long, what is its seked?"Ahmes' solution to the problem is the ratio of half the side of the base of the pyramid to its height, or the runtorise ratio of its face. In other words, the quantity he found for the seked is the cotangent of the...