Structured Cabling

Only available on StudyMode
  • Download(s) : 148
  • Published : May 31, 2013
Open Document
Text Preview
Structured Cabling Technology and Market Assessment
January 13, 2013
When we started researching the structured cabling market a few months ago, it seemed like not much had changed in the past three years. Some of the individuals we interviewed for this report thought so, too. But as it turns out, there have been many changes to the market. The recession reduced investment, led to the cancellation of many projects, and those that continued worked under reduced budgets. This, in addition to changes in IT technology, reshuffled the product mix that the end-users demand from manufacturers, forcing them to reconsider their portfolios, and often, the way that they approach the market. One major market that continues to grow is the data center. Spurred first by the growth of the Internet and now, in addition, by the global proliferation of smartphones and applications like on-demand video, the need for data center space continues to increase. Seeing this opportunity, many structured cabling manufacturers have developed programs specifically to attack this market. Growth in the data center market has increased the need for fiber-optic products. The small form-factor LC connector and laser-optimized multi-mode fiber (LOMF) have become the norm and both are expected to grow over the next five years: the LC LOMF plug at a CAGR of 11% and OM3/OM4 LOMF at an average CAGR of 30.2%. Tight budgets are currently making the upgrade to the premium OM4 fiber a difficult sell for manufacturers. The increased optical reach over OM3 from 300m to 550m, which is the major selling feature of OM4 fiber at 10G, is not needed in a majority of data centers. It is difficult to justify the cost for the upgrade. At the same time, there is a need for a fiber-optic solution that bridges the gap between the 40/100G reach of 125 meters for OM4 multi-mode and 10 kilometers for OS2 single mode fiber. An OM4+ fiber solution that has a reach of 300 meters would provide a cost-effective solution for campus installations and utilize less expensive transceivers. The other option might be to have a less expensive SM transceiver that could reach perhaps one kilometer. Both of these solutions are being developed.

Pre-terminated fiber optic cable assemblies are becoming commonplace, replacing field-terminated ones in the data center and campus environments (Figure 1). These assemblies are popular with project managers due to the speed with which they can be installed and that they are factory-tested by the manufacturer. This eliminates one headache from the project manager’s punch list. These assemblies are a negative for installers who have developed the high level of skill required to field-terminate fiber optic connectors, eliminating a major source of revenue for them. They are custom manufactured at various lengths using a variety of connectors including LC and SC depending on what types of equipment they connect to. However, the LC connector is quickly taking the market due to its small form factor and ability to support high-density applications. The MPO connector is seeing tremendous growth. Its progress is driven by the desire to increase density, simplify termination, and to support new applications such as 40 and 100 Gigabit Ethernet. Bishop predicts a CAGR of more than 170% for these connectors over the next five years (Table 1 below). In the short term, growth potential is stymied somewhat by the economy, with some end-users hesitant to commit to the price premium that these products demand. This is especially true in the colocation data center market that is often designed with short-term goals in mind, where re-cabling in the future is a more attractive option than investing in future market needs. Table 1: Summary of Fiber Products

 

Fiber-optic products are poised to steadily take share from copper in the structured cabling market over the next five years. The overall five-year CAGR for fiber from 2013 to 2017 is expected to exceed 17%, while...
tracking img