STA9708
Regression Analysis: Literacy rates and Poverty rates
As we are aware, poverty rate serve as an indicator for a number of causes in the world. Poverty rates are linked with infant mortality, education, child labor and crime etc. In this project, I will apply the regression analysis learned in the Statistics course to study the relationship between literacy rates and poverty rates among different states in USA. In my study, the poverty rates will be the independent variable (x) and literacy rates will be the dependent variable (y). The purpose of this regression is to determine if there is a correlation between the poverty rates and literacy rates in different states within USA. My null and alternate hypothesis are as follows: Null hypothesis: Ho: β1 = 0 This hypothesis states that there is no correlation between the literacy and poverty rates Alternate hypothesis: Ha: β1≠0 This is the hypothesis we want to prove, there is correlation between the literacy rate and poverty rates The first step I did was to create a scatter plot for the data and the descriptive statistics study. The scatter plot shows a positive correlation between the two variables and the equation of the line is y = 1.0998x + 2.2613 with a R-square value of 0.5305. The scatter plot is shown below: Figure 1: Scatter plot of relationship between poverty and literacy rates

Based on the coefficient of determination of 0.53, we can say that poverty rate is contributing about more than half to the increase in literacy rates in states. The Y-intercept represents the literacy rate without any poverty rate contribution to the states. After the scatter plot, I calculated the descriptive statistics of the dependent variable (y) which is the Literacy rates. The mean literacy rate is 14.76 and the standard error is 1.01. Shown below is the result from the descriptive statistics: Literacy rates - descriptive stats|

| |
Mean| 14.76036172|
Standard Error| 1.002134285|
Median|...

...
Unit 5 – RegressionAnalysis
Mikeja R. Cherry
American InterContinental University
Abstract
In this brief, I will demonstrate selected perceptions of the company Nordstrom, Inc., a retailer that specializes in fashion apparel with over 12 million dollars in sales last year. I will research, review, and analyze perceptions of the company, create graphs to show qualitative and quantitative analysis, and provide a summary of my findings....

...you
cannot consult the regression R2 because
(a) ln(Y) may be negative for 0 < Y < 1.
(b) the TSS are not measured in the same units between the two models.
(c) the slope no longer indicates the effect of a unit change of X on Y in the log-linear
model.
(d) the regression R2 can be greater than one in the second model.
1
(v) The exponential function
(a) is the inverse of the natural logarithm function.
(b) does not play an important role in modeling nonlinear...

...RegressionAnalysis Exercises
1- A farmer wanted to find the relationship between the amount of fertilizer used and the yield of corn. He selected seven acres of his land on which he used different amounts of fertilizer to grow corn. The following table gives the amount (in pounds) of fertilizer used and the yield (in bushels) of corn for each of the seven acres.
|Fertilizer Used |Yield of Corn...

...REGRESSIONANALYSIS
Correlation only indicates the degree and direction of relationship between two variables. It does not, necessarily connote a cause-effect relationship. Even when there are grounds to believe the causal relationship exits, correlation does not tell us which variable is the cause and which, the effect. For example, the demand for a commodity and its price will generally be found to be correlated, but the question whether demand depends on...

...
Memorandum
Subject: Regression to the Mean with Coin Flips
This paper discusses the statistics project, Regression to the Mean with Coin Flips. The paper is divided into four parts, which are summarized below:
Part One: The Questionnaires
This section summarizes the results of questionnaires handed out to a random sample of 110 people. Pie charts are provided, which reflect the responses to each question.
Part Two: 200 Flips
This section...

...l
RegressionAnalysis
Basic Concepts & Methodology
1. Introduction
Regressionanalysis is by far the most popular technique in business and economics for
seeking to explain variations in some quantity in terms of variations in other quantities, or to
develop forecasts of the future based on data from the past. For example, suppose we are
interested in the monthly sales of retail outlets across the UK. An initial data...

...
Mortality Rates
RegressionAnalysis of Multiple Variables
Neil Bhatt
993569302
Sta 108 P. Burman
11 total pages
The question being posed in this experiment is to understand whether or not pollution has an impact on the mortality rate. Taking data from 60 cities (n=60) where the responsive variable Y = mortality rate per population of 100,000, whose variables include Education, Percent of the population that is...

...Quantitative Methods ProjectRegressionAnalysis for the pricing of players in the
Indian Premier League
Executive Summary
The selling price of players at IPL auction is affected by more than one factor. Most of these factors affect each other and still others impact the selling price only indirectly. The challenge of performing a multiple...