# Statistics: Normal Distribution and Data

Pages: 3 (873 words) Published: April 24, 2013
What are the characteristics of a population for which a mean/median/mode would be appropriate? Inappropriate? The analysis of data begins with descriptive statistics such as the mean, median, mode, range, standard deviation, variance, standard error of the mean, and confidence intervals. These statistics are used to summarize data and provide information about the sample from which the data were drawn and the accuracy with which the sample represents the population of interest. The mean, median, and mode are measurements of the “central tendency” of the data. The range, standard deviation, variance, standard error of the mean, and confidence intervals provide information about the “dispersion” or variability of the data about the measurements of central tendency. MEASUREMENTS OF CENTRAL TENDENCY The appropriateness of using the mean, median, or mode in data analysis is dependent upon the nature of the data set and its distribution (normal vs non-normal). The mean (denoted by x) is calculated by dividing the sum of the individual data points (where Σ equals “sum of”) by the number of observations (denoted by n). It is the arithmetic average of the observations and is used to describe the center of a data set. mean=x= One of the most basic purposes of statistics is simply to enable us to make sense of large numbers. For example, if you want to know how the students in your school are doing in the statewide achievement test, and somebody gives you a list of all 600 of their scores, that’s useless. This everyday problem is even more obvious and staggering when you’re dealing, let’s say, with the population data for the nation. We’ve got to be able to consolidate and synthesize large numbers to reveal their collective characteristics and interrelationships, and transform them from an incomprehensible mass to a set of useful and enlightening indicators. The Mean

One of the most useful and widely used techniques for doing this—one which you already know—is the...