Solar Energy Utilisation

Only available on StudyMode
  • Download(s) : 17
  • Published : April 28, 2013
Open Document
Text Preview
-------------------------------------------------
Solar energy
-------------------------------------------------

Solar energy, radiant light and heat from the sun, has been harnessed by humans since ancient times using a range of ever-evolving technologies. Solar energy technologies include solar heating, solar photovoltaics, solar thermal electricity, solar architecture and artificial photosynthesis, which can make considerable contributions to solving some of the most urgent energy problems the world now faces. Solar technologies are broadly characterized as either passive solar or active solar depending on the way they capture, convert and distribute solar energy. Active solar techniques include the use of photovoltaic panels and solar thermal collectors to harness the energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light dispersing properties, and designing spaces that naturally circulate air. In 2011, the International Energy Agency said that "the development of affordable, inexhaustible and clean solar energy technologies will have huge longer-term benefits. It will increase countries’ energy security through reliance on an indigenous, inexhaustible and mostly import-independent resource, enhance sustainability, reduce pollution, lower the costs of mitigating climate change, and keep fossil fuelprices lower than otherwise. These advantages are global. Hence the additional costs of the incentives for early deployment should be considered learning investments; they must be wisely spent and need to be widely shared".

-------------------------------------------------
Applications of solar technology
Average insolation showing land area (small black dots) required to replace the world primary energy supply with solar electricity. 18 TW is 568 Exajoule (EJ) per year. Insolation for most people is from 150 to 300 W/m2 or 3.5 to 7.0 kWh/m2/day. Solar energy refers primarily to the use of solar radiation for practical ends. However, all renewable energies, other than geothermal and tidal, derive their energy from the sun. Solar technologies are broadly characterized as either passive or active depending on the way they capture, convert and distribute sunlight. Active solar techniques use photovoltaic panels, pumps, and fans to convert sunlight into useful outputs. Passive solar techniques include selecting materials with favorable thermal properties, designing spaces that naturally circulate air, and referencing the position of a building to the Sun. Active solar technologies increase the supply of energy and are considered supply side technologies, while passive solar technologies reduce the need for alternate resources and are generally considered demand side technologies.

Water heating
Solar hot water systems use sunlight to heat water. In low geographical latitudes (below 40 degrees) from 60 to 70% of the domestic hot water use with temperatures up to 60 °C can be provided by solar heating systems. The most common types of solar water heaters are evacuated tube collectors (44%) and glazed flat plate collectors (34%) generally used for domestic hot water; and unglazed plastic collectors (21%) used mainly to heat swimming pools. As of 2007, the total installed capacity of solar hot water systems is approximately 154 GW. China is the world leader in their deployment with 70 GW installed as of 2006 and a long term goal of 210 GW by 2020.Israel and Cyprus are the per capita leaders in the use of solar hot water systems with over 90% of homes using them. In the United States, Canada and Australia heating swimming pools is the dominant application of solar hot water with an installed capacity of 18 GW as of 2005.

Electricity production
Solar power is the conversion of sunlight into electricity, either directly using photovoltaic (PV), or indirectly using concentrated solar power (CSP). CSP systems use...
tracking img