Preview

Simple Harmonic Motion Lab Report

Good Essays
Open Document
Open Document
545 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Simple Harmonic Motion Lab Report
Matthew Mannetta
Simple Harmonic Motion Lab Report
Introduction
Simple harmonic motion is the motion of a mass on a spring when it is subject to the linear elastic restoring force given by Hooke’s Law. In this lab, we will observe simple harmonic motion by studying masses on springs. In the first part of this lab, you will determine the period, T, of the spring by observing one sliding mass that is attached to two springs with the spring constant k, and attached to a hanging mass by a string and a pulley. The next part, you will determine the period, T, of oscillation caused by two springs attached to either side of a sliding mass. By knowing the velocity in the second part, you can find kinetic energy and potential energy of the oscillating mass. Also, you must find the uncertainty in the period, kinetic energy, and potential energy.
Procedure
In this experiment, you will determine the experimental and theoretical period of a spring, the kinetic energy and potential energy by measuring the spring constant and velocity of a spring. In this first part of this lab, you will have a sliding mass on a frictionless air track attached to two springs on one side, and attached to a hanging mass by a string and pulley on the other. First you must calculate the mass of the sliding mass and the equilibrium displacement of the spring. The rest of the first part requires you to add 20 grams to the hanging mass and then measuring how far the sliding mass has moved for the equilibrium position. That number will be your delta x. Do that method five times and then solve for the spring constant through the formula:
(Delta m) g = k (Delta x).
The values of k that you solve for will be plugged into the formula:
T = 2 (pi) (radical m/k).
The period that you solved for will be your theoretical period. In part two of this lab, you will attach a spring on either side of a sliding mass on a frictionless air track and have a photo gate measure the period as the mass

You May Also Find These Documents Helpful

  • Satisfactory Essays

    A pendulum is a device which consists of a mass attached to a string from a frictionless pivot which allows it to swing back and forth. In this experiment, the time it takes for a pendulum to go through a period is going to be measured. The time it takes for a pendulum to go through one period can depend on factors such as the length of the string, mass, or the degree in which the pendulum is released from (amplitude). In this experiment, only different masses will be used in order to prove that mass does not have an effect on the time it takes for a pendulum to go through a period.…

    • 527 Words
    • 2 Pages
    Satisfactory Essays
  • Good Essays

    Pendulum Experiment Essay

    • 809 Words
    • 4 Pages

    If the pendulum is set , the force of the motion is used to swing back and forth . where the t period is the time the pendulum takes to complete a cycle of oscillation. As t-1/f the complete distance of the pendulum and its mass is finished , the cycle is described as the amplitude of oscillation (tmass). When the arc is measured the equilibrium position is at sin theta , where the approximate measurement will use sine theta where f=mg , where the angle is theta equalled to x/l, where the arc size…

    • 809 Words
    • 4 Pages
    Good Essays
  • Good Essays

    The period T for a simple pendulum does not depend on the mass or the initial angular displacement, but depends only on the length L of the string and the value of the gravitational field strength g, according to…

    • 1015 Words
    • 5 Pages
    Good Essays
  • Satisfactory Essays

    2. The graph shows the vertical displacement y, in centimeters, that a weight bouncing from a spring would achieve if there were no friction, for a given number of seconds, x.…

    • 252 Words
    • 1 Page
    Satisfactory Essays
  • Good Essays

    For the Love of Hamlet

    • 1774 Words
    • 8 Pages

    2) A pendulum with a mass of 50g on it at a height of 30cm is allowed to swing. At the bottom of its swing it strikes a horizontal spring that compresses 5cm in stopping the pendulum. What is:…

    • 1774 Words
    • 8 Pages
    Good Essays
  • Satisfactory Essays

    1. Determine the spring constant, k, of Spring 1, by using Hooke’s Law. Take three different measurements (since 3 masses) and do three calculations and average your k’s to get a more accurate answer. By applying lots of friction, you will be able to get your mass to hang still. Show a table of your data and your calculations of k.…

    • 402 Words
    • 2 Pages
    Satisfactory Essays
  • Satisfactory Essays

    FEMath

    • 1290 Words
    • 7 Pages

    (­Questions 8-10) Under certain conditions, the motion of an oscillating spring and mass is described by the differential equation where x is displacement in meters and t is time in seconds. At t=0, the displacement is .08 m and the velocity is 0 m per second; that is and…

    • 1290 Words
    • 7 Pages
    Satisfactory Essays
  • Satisfactory Essays

    A 750-kg compact car moving at 100 km/hr has approximately 290 000 Joules of kinetic energy. What is the kinetic energy of the same car if it is moving at 50 km/hr?…

    • 437 Words
    • 2 Pages
    Satisfactory Essays
  • Satisfactory Essays

    Force and Spring

    • 501 Words
    • 2 Pages

    Planet X: The spring is displaced 4 cm from equilibrium because the weight of the100g mass decreases due to the amount…

    • 501 Words
    • 2 Pages
    Satisfactory Essays
  • Better Essays

    Simulation Lab

    • 1191 Words
    • 5 Pages

    where (2π)/(60) was used to convert the revolutions per minute to radians per second. The mass of the press and table top was given as 320kg. The mass for the vibration absorber, ma, was calculated using Equation 3:…

    • 1191 Words
    • 5 Pages
    Better Essays
  • Good Essays

    In this lab, I will study the principles of simple harmonic motion using an oscillating pendulum. If I were to design an experiment that would help me study the properties of an oscillating pendulum and investigate what causes a pendulum to swing faster or slower, I would prepare several masses (e.g. 20g, 50g, 100g, 200g, etc.) that can be attached to a string, several strings of varying lengths from 0.1m to 1.0m that are strong enough to support the weight of the masses, support for each pendulum, a stopwatch, and a measuring tool such as a meter stick. Using such materials, I would try to measure the length of the pendulum, the number of cycles the pendulum goes back and forth, the time it takes for the pendulum to do so, and the variables that drive the pendulum to act as so. Based on what I learned in keystone, I would expect to get results that show that the only variable that affects the period of a pendulum is its length. Additionally, that for pendulums swung from angles smaller than 15 degrees, the angle they are swung at are virtually insignificant. If the results were different, there would be a mistake in my recordings or procedure of the results and the experiment because the expected results have already been proven many times over and have been established as official scientific facts.…

    • 644 Words
    • 3 Pages
    Good Essays
  • Good Essays

    Determine expressions for the following quantities in terms of M, X, D, h, and g. Note that these symbols do not include the spring…

    • 614 Words
    • 3 Pages
    Good Essays
  • Better Essays

    Pendulum Physics Lab

    • 2188 Words
    • 9 Pages

    Was the acceleration constant or changing? How can you tell? The acceleration was constant because the space between each interval is relevant.…

    • 2188 Words
    • 9 Pages
    Better Essays
  • Good Essays

    Physics Pendulum Prac

    • 367 Words
    • 2 Pages

    When a simple pendulum swings with a small angle, the mass on the end performs a good approximation of the back-and-forth motion called simple harmonic motion. The period of the pendulum, that is, the time taken to complete a single full back back-and-forth swing, depends upon just two variables: the length of the string and the rate of acceleration due to gravity. The formula for the period is:…

    • 367 Words
    • 2 Pages
    Good Essays
  • Powerful Essays

    The relationship between mass and time of oscillation of a slinky Introduction
 In the 1950’s, Richard James accidentally discovered what we called today as the ‘slinky’. As he was trying to engineer a way to keep sensitive ship equipment steady at sea, he accidentally knocked some springs off the shelf which caused them to fall. He noticed that these springs appeared to be gracefully “walking” down the shelves instead of them simply falling down. James’ accidental discovery sparked way for further understanding of springs.…

    • 1829 Words
    • 8 Pages
    Powerful Essays