n calculus, Rolle's theorem essentially states that a differentiable function which attains equal values at two distinct points must have a point somewhere between them where the first derivative (the slope of the tangent line to the graph of the function) is zero. -------------------------------------------------

Standard version of the theorem [edit]
If a real-valued function f is continuous on a closed interval [a, b], differentiable on the open interval (a, b), and f(a) = f(b), then there exists a c in the open interval (a, b) such that

This version of Rolle's theorem is used to prove the mean value theorem, of which Rolle's theorem is indeed a special case. It is also the basis for the proof of Taylor's theorem. -------------------------------------------------

History [edit]
Indian mathematician Bhāskara II (1114–1185) is credited with knowledge of Rolle's theorem.[1] The first known formal proof was offered by Michel Rolle in 1691, which used the methods of differential calculus. The name "Rolle's theorem" was first used by Moritz Wilhelm Drobisch of Germany in 1834 and by Giusto Bellavitis of Italy in 1846.[2] -------------------------------------------------

Examples [edit]
First example [edit]

A semicircle of radius r.
For a radius r > 0, consider the function

Its graph is the upper semicircle centered at the origin. This function is continuous on the closed interval [−r,r] and differentiable in the open interval (−r,r), but not differentiable at the endpoints −r and r. Since f(−r) = f(r), Rolle's theorem applies, and indeed, there is a point where the derivative of f is zero. Note that the theorem applies even when the function cannot be differentiated at the endpoints because it only requires the function to be differentiable in the open interval.

Second example [edit]

The graph of the absolute value function.
If differentiability fails at an interior point of the interval, the conclusion of Rolle's theorem may not hold....

...Fermat's Last Theorem
Fermat's Last Theorem states that no three positive integers, for example (x,y,z), can satisfy the equation x^n+y^n=z^n if the integer value of n is greater than 2. Fermat's...

...The Pythagorean Theorem was one of the earliest theorems known to ancient civilizations. This famous theorem is named for the Greek mathematician and philosopher, Pythagoras. Pythagoras founded the Pythagorean School of Mathematics in Cortona, a Greek seaport in Southern Italy. He is credited with many contributions to mathematics although some of them may have actually been the work of his students.
The Pythagorean Theorem is...

...-------------------------------------------------
Pythagorean Theorem
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a relation in Euclidean geometry among the three sides of a right triangle (right-angled triangle). In terms of areas, it states:
In any right triangle, the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares whose sides are the two...

...Historical Account:
Pythagoras, the namesake and supposed discoverer of the Pythagorean Theorem, was born on the Greek island of Samos in the early in the late 6th century. Not much is known about his early years of life, however, we do know that Pythagoras traveled through Egypt in the attempt to learn more about mathematics.
Besides his famous theorem, Pythagoras gained fame for founding a group, the Brotherhood of Pythagoreans, which was dedicated solely...

...theoremsThe Sylow Theorems
Here is my version of the proof of the Sylow theorems. It is the result of
taking the proof in Gallian and trying to make it as digestible as possible. In
particular, I tried to break the long proof into bite-sized pieces. The main
goal here is to convey an overview of how the ingredients fit together, so I'll
skip lightly over some of the details.
The prerequisites are basically all of the group theory that came before the...

...BINOMIAL THEOREM :
AKSHAY MISHRA
XI A , K V 2 , GWALIOR
In elementary algebra, the binomial theorem describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand the power (x + y)n into a sum involving terms of the form axbyc, where the coefficient of each term is a positive integer, and the sum of the exponents of x and y in each term is n. For example: The coefficients appearing in the binomial...

...The Coase Theorem
In “The Problem of Social Cost,” Ronald Coase introduced a different way of thinking about externalities, private property rights and government intervention. The student will briefly discuss how the Coase Theorem, as it would later become known, provides an alternative to government regulation and provision of services and the importance of private property in his theorem.
In his book The Economics of Welfare, Arthur C. Pigou,...

...Negative Externalities and the Coase Theorem
As Adam Smith explained, selfishness leads markets to produce whatever people want. To get rich, you have to sell what the public wants to buy. Voluntary exchange will only take place if both parties perceive that they are better off. Positive externalities result in beneficial outcomes for others, whereas negative externalities impose costs on others. The Coase Theorem is most easily explained via an example
This...