Piston

Topics: Internal combustion engine, Reciprocating engine, Piston Pages: 11 (2134 words) Published: September 20, 2014
 PISTON
Introduction:
In this topic am to explain the piston its working and uses. A piston is a component of reciprocating engines, reciprocating pumps, gas compressors and pneumatic cylinders, among other similar mechanisms. It is the moving component that is contained by a cylinder and is made gas-tight by piston rings. In an engine, its purpose is to transfer force from expanding gas in the cylinder to the crankshaft via a piston rod and/or connecting rod. In a pump, the function is reversed and force is transferred from the crankshaft to the piston for the purpose of compressing or ejecting the fluid in the cylinder. In some engines, the piston also acts as a valve by covering and uncovering ports in the cylinder wall. pistons are widely used in internal combustion engines. 1.Internal combustion engines

Internal combustion engine piston, sectioned to show the gudgeon pin. An internal combustion engine is acted upon by the pressure of the expanding combustion gases in the combustion chamber space at the top of the cylinder. This force then acts downwards through the connecting rod and onto the crankshaft. The connecting rod is attached to the piston by a swivelling gudgeon pin (US: wrist pin). This pin is mounted within the piston: unlike the steam engine, there is no piston rod or crosshead (except big two stroke engines). The pin itself is of hardened steel and is fixed in the piston, but free to move in the connecting rod. A few designs use a 'fully floating' design that is loose in both components. All pins must be prevented from moving sideways and the ends of the pin digging into the cylinder wall, usually bycirclips. Gas sealing is achieved by the use of piston rings. These are a number of narrow iron rings, fitted loosely into grooves in the piston, just below the crown. The rings are split at a point in the rim, allowing them to press against the cylinder with a light spring pressure. Two types of ring are used: the upper rings have solid faces and provide gas sealing; lower rings have narrow edges and a U-shaped profile, to act as oil scrapers. There are many proprietary and detail design features associated with piston rings. Pistons are cast from aluminium alloys. For better strength and fatigue life, some racing pistons may be forged instead. Early pistons were of cast iron, but there were obvious benefits for engine balancing if a lighter alloy could be used. To produce pistons that could survive engine combustion temperatures, it was necessary to develop new alloys such as  alloy  and Hiduminium, specifically for use as pistons. A few early gas engines had double-acting cylinders, but otherwise effectively all internal combustion engine pistons are single-acting. During World War II, the US submarine Pompano was fitted with a prototype of the infamously unreliable H.O.R. double-acting two-stroke diesel engine. Although compact, for use in a cramped submarine, this design of engine was not repeated. internal combustion engines are various types some of them are given below Trunk pistons

Trunk pistons are long, relative to their diameter. They act both as piston and as a cylindrical crosshead. As the connecting rod is angled for part of its rotation, there is also a side force that reacts along the side of the piston against the cylinder wall. A longer piston helps to support this. Trunk pistons have been a common design of piston since the early days of the reciprocating internal combustion engine. They were used for both petrol and diesel engines, although high speed engines have now adopted the lighter weight slipper piston. A characteristic of most trunk pistons, particularly for diesel engines, is that they have a groove for an oil ring below the gudgeon pin, not just the rings between the gudgeon pin and crown. The name 'trunk piston' derives from the 'trunk engine', an early design of marine steam engine. To...
Continue Reading

Please join StudyMode to read the full document

You May Also Find These Documents Helpful

  • Piston Essay
  • Fea Piston Essay
  • Thermal Analysis of Piston for the Influence on Secondary Motion Essay
  • Piston Engines Essay
  • Heat and Piston Cylinder Device Essay
  • Behavioral study of piston manufacturing plant Essay
  • Reliability Analysis of Piston Manufacturing Essay
  • Fatigue Life of Piston Essay

Become a StudyMode Member

Sign Up - It's Free