
Pendulum
From Wikipedia, the free encyclopedia
This article is about pendulums. For other uses, see Pendulum (disambiguation). "Simple gravity pendulum" model assumes no friction or air resistance. An animation of a pendulum showing the velocity and acceleration vectors (v and a).  A pendulum is a weight suspended from a pivot so that it can swing freely.[1] When a pendulum is displaced from its restingequilibrium position, it is subject to a restoring force due to gravity that will accelerate it back toward the equilibrium position. When released, the restoring force combined with the pendulum's mass causes it to oscillate about the equilibrium position, swinging back and forth. The time for one complete cycle, a left swing and a right swing, is called the period. A pendulum swings with a specific period which depends (mainly) on its length. From its discovery around 1602 by Galileo Galilei the regular motion of pendulums was used for timekeeping, and was the world's most accurate timekeeping technology until the 1930s.[2] Pendulums are used to regulate pendulum clocks, and are used in scientific instruments such as accelerometers and seismometers. Historically they were used as gravimeters to measure the acceleration of gravity in geophysical surveys, and even as a standard of length. The word 'pendulum' is new Latin, from the Latin pendulus, meaning 'hanging'.[3] The simple gravity pendulum[4] is an idealized mathematical model of a pendulum.[5][6][7] This is a weight (or bob) on the end of a massless cord suspended from a pivot, without friction. When given an initial push, it will swing back and forth at a constantamplitude. Real pendulums are subject to friction and air drag, so the amplitude of their swings declines. The period of swing of a simple gravity pendulum depends on its length, the local strength of gravity, and to a small extent on the maximum angle that the pendulum swings away from...
...Pendulum
From Wikipedia, the free encyclopedia
For other uses, see Pendulum (disambiguation).
"Simple gravity pendulum" model assumes no friction or air resistance.
A pendulum is a weight suspended from a pivot so that it can swing freely.[1] When a pendulum is displaced sideways from its resting equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back toward the equilibrium...
...Pendulum Lab
A pendulum is something hanging from a fixed point which, when force is applied, swings back, forth, up, and down due to gravity and inertia (Beynon 1). Pendulums can range in shape, size, and weight. An example of a pendulum can range from a swinging chandelier to a washer tied to some string and hung from the ceiling. Galileo was a famous scientist who studied pendulums. He discovered that the period,...
...EXPERIMENT 2 Measurement of g: Use of a simple pendulum
OBJECTIVE: To measure the acceleration due to gravity using a simple pendulum.
Textbook reference: pp1015
INTRODUCTION:
Many things in nature wiggle in a periodic fashion. That is, they vibrate. One such example is a simple pendulum. If we suspend a mass at the end of a piece of string, we have a simple pendulum. Here, the to and fro motion represents a periodic motion used...
...the simple pendulum
2.0 Objectives
The purpose of the experiment is to investigate the time taken on the greatest possible precision of period of simple pendulum and the value of g, acceleration due to gravity and two different periods of both big and small simple pendulum’s oscillations.
3.0 Summary of Result
The results of the experiment have proven the acceleration due to gravity and the precision of period of simple pendulum....
...CENTRIPETAL FORCE ON A PENDULUM
OBJECTIVE
To measure centripetal force exerted on a pendulum using the force sensor bob and in so doing compare this value determined by force calculations based on the height of the pendulum.
THEORY
Newton’s laws of motion are the basis for this experiment. Newton’s first law of motion states that a body in motion will remain in motion unless acted upon by an external force. Newton’s second law of motion states that...
...Course: Pendulum Measurements
Unit # 1 Lesson # 1
Does the Length of the Pendulum affect the number of swings ?
Materials:
• string ,tape ,washer
• Stop watch
• Meter stick, paper ,pencil
Introduction :
I am doing a study to find out if the length of a Pendulum will affect the number of swings. We usually see pendulums in Grandfather clocks. It is the weight that swings back and forth. I will be changing the...
...PCS125 Lab – The Simple Pendulum
Objective and Background
Objective:
The Objective of this experiment is to examine the simple harmonic motion and to determine the value of the acceleration due to gravity from the analysis of the period of the simple pendulum. [1]
Background:
There are three equations that will be used to calculate the period of motion of the simple pendulum. They are the slope of the line of the graph of T² against L, and the...
...period of a pendulum 
[Type the document subtitle] 

Kyle Butler 
3/1/2011 
[Type the abstract of the document here. The abstract is typically a short summary of the contents of the document. Type the abstract of the document here. The abstract is typically a short summary of the contents of the document.] 
The effect of mass, angle and length of string on the period of a pendulum
Abstract
The purpose of this lab was to prove the...