Paul Saffo Six Rules for Effective Forecasting Full Summary in Free Essay

Only available on StudyMode
  • Download(s) : 369
  • Published : April 1, 2013
Open Document
Text Preview
Six Rules for Effective Forecasting
People at cocktail parties are always asking me for stock tips, and then they want to know how my predictions have turned out. Their requests reveal the common but fundamentally erroneous perception that forecasters make predictions. We don’t, of course: Prediction is possible only in a world in which events are preordained and no amount of action in the present can influence future outcomes. That world is the stuff of myth and superstition. The one we inhabit is quite different—little is certain, nothing is preordained, and what we do in the present affects how events unfold, often in significant, unexpected ways. The role of the forecaster in the real world is quite different from that of the mythical seer. Prediction is concerned with future certainty; forecasting looks at how hidden currents in the present signal possible changes in direction for companies, societies, or the world at large. Thus, the primary goal of forecasting is to identify the full range of possibilities, not a limited set of illusory certainties. Whether a specific forecast actually turns out to be accurate is only part of the picture—even a broken clock is right twice a day. Above all, the forecaster’s task is to map uncertainty, for in a world where our actions in the present influence the future, uncertainty is opportunity. Unlike a prediction, a forecast must have a logic to it. That’s what lifts forecasting out of the dark realm of superstition. The forecaster must be able to articulate and defend that logic. Moreover, the consumer of the forecast must understand enough of the forecast process and logic to make an independent assessment of its quality—and to properly account for the opportunities and risks it presents. The wise consumer of a forecast is not a trusting bystander but a participant and, above all, a critic. Even after you have sorted out your forecasters from the seers and prophets, you still face the task of distinguishing good forecasts from bad, and that’s where this article comes in. In the following pages, I try to demythologize the forecasting process so that you can become a more sophisticated and participative consumer of forecasts, rather than a passive absorber. I offer a set of simple, commonsense rules that you can use as you embark on a voyage of discovery with professional forecasters. Most important, I hope to give you the tools to evaluate forecasts for yourself. Rule 1: Define a Cone of Uncertainty

As a decision maker, you ultimately have to rely on your intuition and judgment. There’s no getting around that in a world of uncertainty. But effective forecasting provides essential context that informs your intuition. It broadens your understanding by revealing overlooked possibilities and exposing unexamined assumptions regarding hoped-for outcomes. At the same time, it narrows the decision space within which you must exercise your intuition. I visualize this process as mapping a cone of uncertainty, a tool I use to delineate possibilities that extend out from a particular moment or event. The forecaster’s job is to define the cone in a manner that helps the decision maker exercise strategic judgment. Many factors go into delineating the cone of uncertainty, but the most important is defining its breadth, which is a measure of overall uncertainty. Other factors—relationships among elements, for example, and the ranking of possible outcomes—must also be considered in developing a forecast, but determining the cone’s breadth is the crucial first step. Imagine it is 1997, the Toyota Prius has just gone on sale in Japan, and you are forecasting the future of the market for hybrid cars in the United States. External factors to consider would be oil price trends and consumer attitudes regarding the environment, as well as more general factors such as economic trends. Inside the cone would be factors such as the possible emergence of competing technologies (for instance, fuel cells)...
tracking img