Natural Language Processing.

Only available on StudyMode
  • Download(s) : 252
  • Published : January 29, 2013
Open Document
Text Preview
Natural Language Processing
Natural language processing (NLP) is a field of computer science, artificial intelligence, and linguistics concerned with the interactions between computers and human (natural) languages. As such, NLP is related to the area of human–computer interaction. Many challenges in NLP involve natural language understanding -- that is, enabling computers to derive meaning from human or natural language input.

An automated online assistant providing customer service on a web page, an example of an application where natural language processing is a major component.

History:
History of natural language processing
The history of NLP generally starts in the 1950s, although work can be found from earlier periods. In 1950, Alan Turing published his famous article "Computing Machinery and Intelligence" which proposed what is now called the Turing test as a criterion of intelligence. This criterion depends on the ability of a computer program to impersonate a human in a real-time written conversation with a human judge, sufficiently well that the judge is unable to distinguish reliably — on the basis of the conversational content alone — between the program and a real human. The Georgetown experiment in 1954 involved fully automatic translation of more than sixty Russian sentences into English. The authors claimed that within three or five years, machine translation would be a solved problem. However, real progress was much slower, and after the ALPAC report in 1966, which found that ten years long research had failed to fulfill the expectations, funding for machine translation was dramatically reduced. Little further research in machine translation was conducted until the late 1980s, when the first statistical machine translation systems were developed. Some notably successful NLP systems developed in the 1960s were SHRDLU, a natural language system working in restricted "blocks worlds" with restricted vocabularies, and ELIZA, a simulation of a Rogerian psychotherapist, written by Joseph Weizenbaum between 1964 to 1966. Using almost no information about human thought or emotion, ELIZA sometimes provided a startlingly human-like interaction. When the "patient" exceeded the very small knowledge base, ELIZA might provide a generic response, for example, responding to "My head hurts" with "Why do you say your head hurts?". During the 70's many programmers began to write 'conceptual ontologies', which structured real-world information into computer-understandable data. Examples are MARGIE (Schank, 1975), SAM (Cullingford, 1978), PAM (Wilensky, 1978), TaleSpin (Meehan, 1976), QUALM (Lehnert, 1977), Politics (Carbonell, 1979), and Plot Units (Lehnert 1981). During this time, many chatterbots were written including PARRY, Racter, and Jabberwacky.

Up to the 1980s, most NLP systems were based on complex sets of hand-written rules. Starting in the late 1980s, however, there was a revolution in NLP with the introduction of machine learning algorithms for language processing. This was due both to the steady increase in computational power resulting from Moore's Law and the gradual lessening of the dominance of Chomskyan theories of linguistics (e.g.transformational grammar), whose theoretical underpinnings discouraged the sort of corpus linguistics that underlies the machine-learning approach to language processing. Some of the earliest-used machine learning algorithms, such as decision trees, produced systems of hard if-then rules similar to existing hand-written rules. Increasingly, however, research has focused on statistical models, which make soft,probabilistic decisions based on attaching real-valued weights to the features making up the input data. The cache language models upon which many speech recognition systems now rely are examples of such statistical models. Such models are generally more robust when given unfamiliar input, especially input that contains...
tracking img