Moletronics: Logic Gate and Programmable Logic Devices

Only available on StudyMode
  • Topic: Logic gate, Field-programmable gate array, Programmable logic device
  • Pages : 9 (2959 words )
  • Download(s) : 125
  • Published : September 4, 2012
Open Document
Text Preview
MOLETRONICS-“an invisible technology”

ABSTRACT

As a scientific pursuit, the search for a viable successor to silicon computer technology has garnered considerable curiosity in the last decade. The latest idea, and one of the most intriguing, is known as molecular computers, or moletronics, in which single molecules serve as switches, "quantum wires" a few atoms thick serve as wiring, and the hardware is synthesized chemically from the bottom up. The central thesis of moletronics is that almost any chemically stable structure that is not specifically disallowed by the laws of physics can in fact be built. The possibility of building things atom by atom was first introduced by Richard Feynman in 1959. An "assembler", which is little more than a submicroscopic robotic arm can be built and be controlled. We can use it to secure and position compounds in order to direct the precise location at which chemical reactions occur. This general approach allows the construction of large, atomically precise objects by initiating a sequence of controlled chemical reactions. In order for this to function as we wish, each assembler requires a process for receiving and executing the instruction set that will dictate its actions. In time, molecular machines might even have onboard, high speed RAM and slower but more permanent storage. They would have communications capability and power supply. . Moletronics is expected to touch almost every aspect of our lives, right down to the water we drink and the air we breathe. Experimental work has already resulted in the production of molecular tweezers, a carbon nanotube transistor, and logic gates. Theoretical work is progressing as well. James M. Tour of Rice University is working on the construction of a molecular computer. Researchers at Zyvex have proposed an Exponential Assembly Process that might improve the creation of assemblers and products, before they are even simulated in the lab. We have even seen researchers create an artificial muscle using nanotubes, which may have medical applications in the nearer term. Teramac computer has the capacity to perform 1012 operations in one seconds but it has 220,000 hardware defects and still has performed some tasks 100 times faster than single-processor .The defect-tolerant computer architecture and its implications for moletronics is the latest in this technology. So the very fact that this machine worked suggested that we ought to take some time and learn about it. Such a 'defect-tolerant' architecture through moletronics could bridge the gap between the current generation of microchips and the next generation of molecular-scale computers.

The Architecture of a Moletronics Computer

Introduction

Recently, there have been some significant advances in the fabrication and demonstration of individual molecular electronic wires and diode switches. Some novel designs for several such simple molecular electronic digital logic circuits: a complete set of three fundamental logic gates: (AND, OR, and XOR gates), plus and adder function built up from the gates via the well-known combinational logic, was demonstrated. This means in coming future, this technology could be a replacement for VLSI. However, currently, this technology is only available under lab condition. How to mass product moletronic chips is still a big problem. Currently, integrated circuits by etching silicon wafers using beam of light. It's the VLSI lithography-based technology makes mass production of Pentium III processor possible. But as the size of logic block goes to nano-scale, this technology no long available. As wavelength get too short, they tend to become X-rays and can damage the micro structure of molecules. On the other hand, the mask of lithography of Pentium III is so...
tracking img