Mathematicians of India

Topics: Indian mathematics, Real number, Quadratic equation Pages: 14 (5573 words) Published: August 23, 2010
Aryabhata  (476–550 CE) was the first in the line of greatmathematician-astronomers from the classical age of Indian mathematics and Indian astronomy. His most famous works are the Aryabhatiya (499 CE, when he was 23 years old) and the Arya-siddhanta. Name While there is a tendency to misspell his name as "Aryabhatta" by analogy with other names having the "bhatta" suffix, his name is properly spelled Aryabhata: every astronomical text spells his name thus,[1] including Brahmagupta's references to him "in more than a hundred places by name".[2] Furthermore, in most instances "Aryabhatta" does not fit the metre either.[1] Birth Aryabhata mentions in the Aryabhatiya that it was composed 3,600 years into the Kali Yuga, when he was 23 years old. This corresponds to 499 CE, and implies that he was born in 476 CE.[1] Aryabhata provides no information about his place of birth. The only information comes from Bhāskara I, who describes Aryabhata as āśmakīya, "one belonging to the aśmaka country." While aśmaka was originally situated in the northwest of India, it is widely attested that, during the Buddha's time, a branch of the Aśmaka people settled in the region between the Narmada and Godavari rivers, in the South Gujarat–North Maharashtra region of central India. Aryabhata is believed to have been born there.[1][3] However, early Buddhist texts describe Ashmaka as being further south, in dakshinapath or the Deccan, while other texts describe the Ashmakas as having fought Alexander, which would put them further north.[3] Mathematics Place value system and zero The place-value system, first seen in the 3rd century Bakhshali Manuscript, was clearly in place in his work. While he did not use a symbol for zero, the French mathematician Georges Ifrah argues that knowledge of zero was implicit in Aryabhata's place-value system as a place holder for the powers of ten with null coefficients[10] However, Aryabhata did not use the brahmi numerals. Continuing the Sanskritic tradition from Vedic times, he used letters of the alphabet to denote numbers, expressing quantities, such as the table of sines in a mnemonic form.[11] ]Pi as irrational Aryabhata worked on the approximation for Pi (π), and may have come to the conclusion that π is irrational. In the second part of the Aryabhatiyam (gaṇitapāda10), he writes: caturadhikam śatamaṣṭaguṇam dvāṣaṣṭistathā sahasrāṇām ayutadvayaviṣkambhasyāsanno vṛttapariṇāhaḥ. "Add four to 100, multiply by eight, and then add 62,000. By this rule the circumference of a circle with a diameter of 20,000 can be approached."[12] This implies that the ratio of the circumference to the diameter is ((4+100)×8+62000)/20000 = 62832/20000 = 3.1416, which is accurate to five significant figures. It is speculated that Aryabhata used the word āsanna (approaching), to mean that not only is this an approximation but that the value is incommensurable (orirrational). If this is correct, it is quite a sophisticated insight, because the irrationality of pi was proved in Europe only in 1761 by Lambert).[13] After Aryabhatiya was translated into Arabic (ca. 820 CE) this approximation was mentioned in Al-Khwarizmi's book on algebra.[3] Mensuration and trigonometry In Ganitapada 6, Aryabhata gives the area of a triangle as tribhujasya phalashariram samadalakoti bhujardhasamvargah that translates to: "for a triangle, the result of a perpendicular with the half-side is the area Aryabhata discussed the concept of sine in his work by the name of ardha-jya. Literally, it means "half-chord". For simplicity, people started calling it jya. When Arabic writers translated his works from Sanskrit into Arabic, they referred it as jiba. However, in Arabic writings, vowels are omitted, and it was abbreviated as jb. Later writers substituted it with jiab, meaning "cove" or "bay." (In Arabic, jiba is a meaningless word.) Later in the 12th century, when Gherardo of Cremonatranslated these writings from Arabic into Latin, he replaced the...
Continue Reading

Please join StudyMode to read the full document

You May Also Find These Documents Helpful

  • mathematicians Essay
  • Mathematicians Essay
  • Essay about Mathematicians
  • india Essay
  • Indian Mathematicians Essay
  • Indian Mathematicians Essay
  • FDI in India Essay
  • India Essay

Become a StudyMode Member

Sign Up - It's Free