Math Self-efficacy

Only available on StudyMode
  • Download(s) : 151
  • Published : March 31, 2013
Open Document
Text Preview

Accepted for publication in the Journal of Educational Psychology. This version may slightly differ from the published version.

Does Math Self-efficacy Mediate the Effect of the Perceived Classroom Environment on Standardized Math Test Performance?

Lisa A. Fast University of California, Riverside James Lewis University of California, Riverside Michael J. Bryant California Institute of the Arts Kathleen A. Bocian University of California, Riverside Richard A. Cardullo University of California, Riverside Michael Rettig University of California, Riverside Kimberly A. Hammond University of California, Riverside

Math Self-efficacy 2 Abstract We examined the effect of the perceived classroom environment on math self-efficacy and the effect of math self-efficacy on standardized math test performance. Upper elementary school students (n = 1163) provided self-reports of their perceived math selfefficacy and the degree to which their math classroom environment was masteryoriented, challenging, and caring. Individual student scores on the California Standards Test for Mathematics were also collected. A series of two-level models revealed that students who perceived their classroom environments as more caring, challenging, and mastery-oriented had significantly higher levels of math efficacy, and higher levels of math efficacy positively predicted math performance. Analysis of the indirect effects of classroom variables on math performance indicated a small significant mediating effect of self-efficacy. Implications for research on self-efficacy and the perceived classroom environment are discussed.

Math Self-efficacy 3 Does Math Self-efficacy Mediate the Effect of the Perceived Classroom Environment on Standardized Math Test Performance? In the current high-stakes testing environment, any attribute of a student that positively influences achievement is of interest. The degree to which a student believes that he/she is capable of performing specific tasks, referred to as self-efficacy, is particularly relevant given that self-efficacy has been argued to have powerful effects on achievement behavior (Bandura, 1986). Those with higher self-efficacy are proposed to have higher aspirations, stronger commitments to their goals, and recover more quickly from setbacks than those lower in self-efficacy. Beliefs in one’s efficacy can vary across academic subjects (e.g. reading vs. writing) and self-efficacy for mathematics has received close attention. Students with higher math self-efficacy persist longer on difficult math problems and are more accurate in math computations than those lower in math self-efficacy (Collins, 1982; Hoffman & Schraw, 2009). Math self-efficacy is also a stronger predictor of math performance than either math anxiety or previous math experience (Pajares & Miller, 1994; Pajares & Miller, 1995, respectively) and influences math performance as strongly as overall mental ability (Pajares & Kranzler, 1995). The demonstrated importance of self-efficacy in academic achievement has provoked widespread interest in specific factors that affect a student’s self-efficacy beliefs. Bandura’s (1997) social-cognitive theory proposed that self-efficacy is most strongly affected by one’s previous performance and research largely supports this (Chen & Zimmerman, 2007). His theory also suggests that self-efficacy is affected by observing others (e.g. watching peers succeed at a task), verbal persuasion (e.g. encouragement from parents and teachers), and interpretation of physiological states (e.g.

Math Self-efficacy 4 lack of anxiety may be a signal that one possesses skills). Although several studies indicate that manipulating features of learning environments along these theoretical premises has immediate and detectable effects on self-efficacy (Schunk, 1982, 1983, 1984; Schunk & Hanson, 1985), it seems possible that students’...
tracking img