Large Hadron Collider

Only available on StudyMode
  • Topic: Large Hadron Collider, Particle physics, Elementary particle
  • Pages : 4 (1657 words )
  • Download(s) : 133
  • Published : January 30, 2013
Open Document
Text Preview
The Large Hadron Collider

When information was first brought to the attention of worlds’ people, it was a machine that many feared would end our planet as we knew it. But the truth is, the Large Hadron Collider is forever changing the way we study physics using its’ six different particle detectors to give physicist a better fundamental understanding of the particles that make up our universe and how they interact with each other. Once upon a time, about 13.75 billion years ago, a miniscule area of densely compressed and heated material created a Big Bang. In less than a fraction of a second, every building block to our universe existed. These building blocks or subatomic particles can be found in every single piece of matter there is to observe in our universe. Though physicist regularly deal with these atoms, they still have a lot of answered questions regarding them. These unanswered questions are the very reason for the conception of the Large Hadron Collider (LHC). In 1994 the European Organization for Nuclear Research (or CERN) approved the project to build the LHC. It would take all of CERN, along with the collaboration of ten thousand scientist and engineers from one hundred countries around the world and a ball park figure of $5.5 billion dollars to complete the massive project (Higfield, 2008). The finished project has a circumference of twenty seven kilometers and lies as deep as a one hundred eighty meters underground. Conceived in 1984, it would not successfully circulate its first beam until September 10, 2008. The LHC performs a total of six different experimental functions. For each of these experiments there is a corresponding particle detector. The first experiment detector is called ALICE. The data obtained by the ALICE will allow physicist to study quark-gluon plasma (CERN, 2008). Gluons make up plasma that holds quarks together. Quarks are what make up protons and neutrons. The quark-gluon plasma is what in turns holds everything in...
tracking img