Land Degradation

Only available on StudyMode
  • Topic: Soil, Erosion, Soil science
  • Pages : 18 (6243 words )
  • Download(s) : 195
  • Published : October 9, 2011
Open Document
Text Preview
Land degradation will remain an important global issue for the 21st century because of its adverse impact on agronomic productivity, the environment, and its effect on food security and the quality of life. Productivity impacts of land degradation are due to a decline in land quality on site where degradation occurs (e.g. erosion) and off site where sediments are deposited. However, the on-site impacts of land degradation on productivity are easily masked due to use of additional inputs and adoption of improved technology and have led some to question the negative effects of desertification. The relative magnitude of economic losses due to productivity decline versus environmental deterioration also has created a debate. Some economists argue that the on-site impact of soil erosion and other degradative processes are not severe enough to warrant implementing any action plan at a national or an international level. Land managers (farmers), they argue, should take care of the restorative inputs needed to enhance productivity. Agronomists and soil scientists, on the other hand, argue that land is a non-renewable resource at a human time-scale and some adverse effects of degradative processes on land quality are irreversible, e.g. reduction in effective rooting depth. The masking effect of improved technology provides a false sense of security. The productivity of some lands has declined by 50% due to soil erosion and desertification. Yield reduction in Africa due to past soil erosion may range from 2 to 40%, with a mean loss of 8.2% for the continent. In South Asia, annual loss in productivity is estimated at 36 million tons of cereal equivalent valued at US$5,400 million by water erosion, and US$1,800 million due to wind erosion. It is estimated that the total annual cost of erosion from agriculture in the USA is about US$44 billion per year, i.e. about US$247 per ha of cropland and pasture. On a global scale the annual loss of 75 billion tons of soil costs the world about US$400 billion per year, or approximately US$70 per person per year. Only about 3% of the global land surface can be considered as prime or Class I land and this is not found in the tropics. Another 8% of land is in Classes II and III. This 11% of land must feed the six billion people today and the 7.6 billion expected in 2020. Desertification is experienced on 33% of the global land surface and affects more than one billion people, half of whom live in Africa. Land degradation, a decline in land quality caused by human activities, has been a major global issue during the 20th century and will remain high on the international agenda in the 21st century. The importance of land degradation among global issues is enhanced because of its impact on world food security and quality of the environment. High population density is not necessarily related to land degradation; it is what a population does to the land that determines the extent of degradation. People can be a major asset in reversing a trend towards degradation. However, they need to be healthy and politically and economically motivated to care for the land, as subsistence agriculture, poverty, and illiteracy can be important causes of land and environmental degradation. Land degradation can be considered in terms of the loss of actual or potential productivity or utility as a result of natural or anthropic factors; it is the decline in land quality or reduction in its productivity. In the context of productivity, land degradation results from a mismatch between land quality and land use (Beinroth et al., 1994). Mechanisms that initiate land degradation include physical, chemical, and biological processes (Lal, 1994). Important among physical processes are a decline in soil structure leading to crusting, compaction, erosion, desertification, anaerobism, environmental pollution, and unsustainable use of natural resources. Significant chemical processes include acidification, leaching, salinization,...
tracking img