Kinetic Theory

Topics: Kinetic theory, Ideal gas law, Ideal gas Pages: 6 (1625 words) Published: April 21, 2012
The kinetic theory of gases describes a gas as a large number of small particles (atoms or molecules), all of which are in constant, random motion. The rapidly moving particles constantly collide with each other and with the walls of the container. Kinetic theory explains macroscopic properties of gases, such as pressure, temperature, or volume, by considering their molecular composition and motion. Essentially, the theory posits that pressure is due not to static repulsion between molecules, as was Isaac Newton's conjecture, but due to collisions between molecules moving at different velocities through Brownian motion. While the particles making up a gas are too small to be visible, the jittering motion of pollen grains or dust particles which can be seen under a microscope, known as Brownian motion, results directly from collisions between the particle and gas molecules. As pointed out by Albert Einstein in 1905, this experimental evidence for kinetic theory is generally seen as having confirmed the existence of atoms and molecules.

The theory for ideal gases makes the following assumptions:
The gas consists of very small particles. This smallness of their size is such that the total volume of the individual gas molecules added up is negligible compared to the volume of the container. This is equivalent to stating that the average distance separating the gas particles is large compared to their size. These particles have the same mass.

The number of molecules is so large that statistical treatment can be applied. These molecules are in constant, random, and rapid motion.
The rapidly moving particles constantly collide among themselves and with the walls of the container. All these collisions are perfectly elastic. This means, the molecules are considered to be perfectly spherical in shape, and elastic in nature. Except during collisions, the interactions among molecules are negligible. (That is, they exert no forces on one another.) This implies:

1. Relativistic effects are negligible.
2. Quantum-mechanical effects are negligible. This means that the inter-particle distance is much larger than the thermal de Broglie wavelength and the molecules are treated as classical objects. 3. Because of the above two, their dynamics can be treated classically. This means, the equations of motion of the molecules are time-reversible. The average kinetic energy of the gas particles depends only on the temperature of the system. The time during collision of molecule with the container's wall is negligible as compared to the time between successive collisions. More modern developments relax these assumptions and are based on the Boltzmann equation. These can accurately describe the properties of dense gases, because they include the volume of the molecules. The necessary assumptions are the absence of quantum effects, molecular chaos and small gradients in bulk properties. Expansions to higher orders in the density are known as virial expansions. The definitive work is the book by Chapman and Enskog but there have been many modern developments and there is an alternative approach developed by Grad based on moment expansions.[1] In the other limit, for extremely rarefied gases, the gradients in bulk properties are not small compared to the mean free paths. This is known as the Knudsen regime and expansions can be performed in the Knudsen number. Properties

Pressure and kinetic energy
Pressure is explained by kinetic theory as arising from the force exerted by molecules or atoms impacting on the walls of a container. Consider a gas of N molecules, each of mass m, enclosed in a cuboidal container of volume V=L3. When a gas molecule collides with the wall of the container perpendicular to the x coordinate axis and bounces off in the opposite direction with the same speed (an elastic collision), then the momentum lost by the particle and gained by the wall is:

where vx is the x-component of the initial velocity of...