# Itm 431 Module 2 Is Using an Encryption System Like Pgp a Good Idea for Individuals and Organizations? and Why?

Topics: Cryptography, Pretty Good Privacy, Encryption Pages: 3 (1325 words) Published: January 27, 2013
Cryptography is the science of using mathematics to encrypt and decrypt data. Cryptography enables you to store sensitive information or transmit it across insecure networks (like the Internet) so that it cannot be read by anyone except the intended recipient. When Julius Caesar sent messages to his generals, he didn't trust his messengers. Subsequently, he devised a method of disguising his messages so only the intended recipient could decipher it. Only someone who knew Caesar’s "shift" rule could decipher his messages (Network Associates, Inc., 1990-1999). The Caesar cipher is one of the earliest known and simplest forms of cryptography. It is a type of substitution cipher in which each letter in the plaintext is shifted a certain number of places down the alphabet. For example, with a shift of 1, A would be replaced by B, B would become C, and so on (Lyons, 2009 - 2012). Caesar’s encryption method would be known as symmetric cryptography today. Cryptography is considered not only a part of the branch of mathematics, but also a branch of computer science. There are two forms of cryptosystems: symmetric and asymmetric. Symmetric cryptosystems involve the use of a single key known as the secret key to encrypt and decrypt data or messages. When a message is sent, the user encrypts the message with a key which is known only to the intended recipient. The receiver will then use the known key to decrypt the message back into plaintext. The problem that symmetric cryptosystems have always faced is the lack of a secure means for the sharing of the secret key by the individuals who wish to secure their data or communications (Calloway, 2012). Additionally, the amount of keys needed for a large corporation could range into the millions, making symmetric encryption a poor choice. For example, if John, Jan, Bob, Bill, Margery, Maud, Wayne, Amber, Shane, and Phil all work together, they all need copies of each others’ encryption keys. Mathematically speaking, each...